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a b s t r a c t

We present a new model formulation for lot-sizing and scheduling of multi-stage flow lines which works
without a fixed lead-time offset and still guarantees a feasible material flow. In the literature, multi-stage
lot-sizing model formulations often use a fixed lead time offset of one period leading to increased
planned lead times. Computational tests have shown that the total costs resulting from our new model
formulation are at least 10% lower. Furthermore, we present a solution approach based on Fix-and-Relax
and Fix-and-Optimize. Numerical results show that this solution approach generates high-quality solu-
tions in moderate computational time.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Great efforts are taken by industry to provide customers with
reliable due dates while at the same time looking for ways to re-
duce throughput times. One such approach concerns Mathematical
Programming models for lot-sizing and scheduling. These allow to
generate capacity feasible plans and thereby to derive reliable due
dates at minimum costs. However, in a multi-period, multi-stage
model a fixed lead time offset of one period between adjacent pro-
duction stages is usually modeled to secure a feasible material
flow, resulting in unnecessary planned lead times. This paper will
present a lot-sizing and scheduling model which works without
a positive lead time offset, while still securing a feasible material
flow at any point in time. Our objective function will minimize set-
up, holding, and backordering costs. Potential applications of our
model are in the consumer goods or pharmaceutical industry
where a few products are made to stock on a two- or three-stage
flow line where the material flows between successive production
stages are decoupled by inventories of intermediate products.

The paper is organized as follows: In Section 2 a literature re-
view on simultaneous lot-sizing and scheduling models is pre-
sented followed by the assumptions underlying our models.
Section 3 will start with a MIP model formulation for the multi-
stage PLSP with a lead time offset of one (micro) period. This model
formulation forms the basis for the model with no fixed lead time
offset which concludes this section. Section 4 describes a combined
Fix-and-Relax and Fix-and-Optimize approach which has been cre-
ated to generate high quality solutions for decision problems of

realistic size. Section 5 presents the test design and computational
test results. Finally, Section 6 summarizes our findings and outlines
three potential model extensions.

2. Literature review and problem statement

Models and solution procedures for simultaneous lot-sizing and
scheduling have attracted many researchers in the last two dec-
ades starting with the pioneering work of Karmarkar and Schrage
(1985). Since then, the focus of research has been on single ma-
chines. Note that a flow line with no intermediate storage may
be treated – from a planning point of view – like a single machine.
Subsequently, the term machine is used also as a collective term
for a stage or any type of resource. In recent years research papers
addressed the multi-machine as well as the parallel machine case.
We will not review the vast number of proposals for single ma-
chines but concentrate on multi-level bills of materials on multiple
machines. For the parallel machine case we refer to the literature
review of Tempelmeier and Buschkühl (2008).

A major distinction of model formulations is the structure of the
time axis. On the one hand we have big bucket models and on the
other hand small bucket models. In big bucket models all items can
be produced – at least in principle – within a period (i.e. a time
bucket) on each machine. The number of periods to consider may
remain small, however, there is little control of the sequence of
items produced within a period unless further traveling salesman
problem type constraints are added (like in the Capacitated Lot-
sizing Problem with Sequence Dependent Setup Costs (CLSDs) ap-
proach (see Haase, 1996)). A further drawback is that most big
bucket models require a lead time offset of one (macro) period in
order to secure a feasible material flow between production stages
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while small bucket models usually only require a micro period as a
fixed lead time offset. But even this micro period might be a day or
a week. Note that for small bucket models the assumption is that at
most one or two items may be produced per period. Hence, the
number of periods to include into the model is relatively large
and increases the computational effort.

As a compromise so called hybrid models have been proposed
where macro periods of fixed length are associated with known
external events (like external demands) while a number of
micro-periods of variable lengths are within a macro period. In
each micro period at most one single item may be produced. Here,
a fixed lead time offset of one micro period will suffice to secure
feasible material flows between stages. Which model is best can-
not be answered in general and also depends on the algorithm pro-
posed for its solution. Next, we will present some contributions for
each time structure.

Model formulations based on the multi-stage CLSD have been
considered by Haase (1996), Grünert (1998), and Sahling (2010).
All these models assume a fixed lead time offset of one (macro)
period. Sahling (2010) combines a standard MIP solver with a
Fix-and-Optimize heuristic and is able to generate feasible solu-
tions for all test instances with up to 40 items on 12 machines
for a 17 periods time horizon. The solution quality is even better
than a reference solution obtained by a MIP solver with a given
CPU time limit. A model structure similar to the CLSD has been pro-
posed by Mohammadi et al. (2009). Instead of TSP oriented
sequencing constraints they assume that there must be precisely
as many setups in each (macro) period as there are items on each
machine. The setups do not need to be between different products.
Machines as well as product structures are serial. They use a re-
laxed MIP model and generate solutions by a standard MIP solver
within a rolling horizon setting. Problem sizes range from 3 to 7
end products on 3–7 machines over 3–10 (macro) periods. An
attractive feature of their model is that a product j produced on
machine m + 1 has to be finished before the start of production
on the successor machine m (i.e. a fixed lead time offset equivalent
to the runtime of the lot on machine m).

In Haase (1994) proposed a small bucket model where at most
two items may be produced within a period which he called the
Proportional Lot-sizing and Scheduling Problem (PLSP). The PLSP
is appealed for solving real-world single machine lot-sizing and
scheduling problems because of its flexibility and exactness in
modeling the timing of setup activities. For the single machine case
it can be shown that the PLSP provides solutions that are as good as
those generated by the (much more complex) continuous time
models (e.g. Papageorgiou and Pantelides, 1996). The only require-
ment is that the length of a period does not exceed the (minimum)
setup time plus the (minimum) time of producing a single batch
(or a minimum lot size).

A PLSP-type model has been developed by Kimms (1999) for a
multi-level bill of materials (BOMs) on multiple machines. He de-
vised a genetic algorithm (GA) and concluded that for about
17.5% of the test instances no feasible solution could be generated
and that the average deviation from the optimum was 19.9%.
Hence, Kimms and Drexl (1998) conclude that even finding a fea-
sible solution is a formidable task due to the additional restrictions
caused by the BOM. Chang et al. (2004) adopted the model formu-
lation of Kimms (1999) and introduced capacity allocation rules for
products as well as upper bounds on lot sizes. As a solution proce-
dure the authors also made use of a GA.

It seems that a GA constitutes an attractive meta-heuristic, be-
cause this has not only been chosen as a solution procedure by
many researchers (e.g. Palaniappan and Jawahar, 2011) but also
as a solution engine for production planning and scheduling in to-
days Advanced Planning Systems (e.g. SAP APO, see Stadtler and
Kilger, 2008). The drawback of meta-heuristics, like the GA, is that

a solution’s quality (with respect to the optimal solution) is usually
unknown. A specific feature of the model proposed by Palaniappan
and Jawahar (2011) is that all the machines of the flow line have to
be set up simultaneously if a new product is loaded to the flow line.
The resulting non-linear integer programming model has also been
solved by a standard solver for small test instances in order to have
an indication of the solution quality of the GA.

To overcome model inadequacies a hybrid model named Gener-
alized Lot-Sizing and Scheduling Problem (GLSP) seems advanta-
geous. While the model by Fandel and Stammen-Hegener (2006)
seems more conceptual than solvable by a standard MIP solver,
Seanner and Meyr (2011) proposed an MIP model formulation
including quantity-splitting. This means, one part of the produc-
tion quantity can be directly consumed by the successors in the
same micro period, while the second part is available with a lead
time offset of one micro period. They experienced that generating
feasible solutions for medium sized test instances (for 6–12 items,
3–9 machines over 3–8 (macro) periods) is still challenging even if
embedded in a Fix-and-Relax heuristic.

A drawback of all the proposals mentioned above is that they
require a lead time offset of at least one (variable micro) period.
However, if there is no need in practice to have such a lead time
offset, this planned lead time offset increases throughput times
and intermediate inventories unnecessarily.

Last but not least we would like to point to a specific application
area, namely a two stage production process (also known as make-
and-pack production). Baumann and Trautmann (2010) devised a
mixed integer programming model for make-and-pack production,
which – for the first time – solved small real world decision prob-
lems to optimality in reasonable computational time with a stan-
dard MIP solver. However, in contrast to our model the batch
size is fixed, not variable.

In summary, research is in a state that each proposal has its lim-
iting assumptions and industry will have to choose the model for-
mulation and solution approach carefully best suited for the
decision problem at hand. However, model sizes which are solv-
able with reasonable numerical effort are still limited. Hence, our
contribution is to present a new PLSP model formulation that is
capable and flexible enough to generate high quality solutions
for a great number of real world lot-sizing and scheduling prob-
lems within reasonable computational times if embedded into a
Fix-and-Optimize heuristic.

The flow line model considered in this paper is based on a num-
ber of assumptions. First, we present those assumptions which also
hold for the single-level, single-machine PLSP as described by
Haase (1994) and later extended by Suerie (2005b):

� The planning interval is divided into discrete time periods (not
necessarily of equal length).
� At most two items can be produced within a period.
� Production speed (on the machine) is constant within a period

and may be product dependent.
� Lot sizes may be of any quantity.
� Primary demands only occur at the end of a period.
� Inventory holding costs are calculated based on the end-of-per-

iod inventory.
� A setup leads to setup costs and setup times.

Suerie (2005b) proposed a number of valuable extensions to the
PLSP (in the context of a single machine) like campaign production,
batch size restrictions and period overlapping setup times. The lat-
ter will also be incorporated in our model. Stadtler (2011) made
suggestions regarding a PLSP model formulation for a multi-level
bill of materials, single machine case. His model allows linear, con-
vergent and divergent bill of materials. This also holds for the mod-
el proposed here.
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