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a b s t r a c t

We extend and generalize some results on bounding security prices under two stochastic volatility mod-
els that provide closed-form expressions for option prices. In detail, we compute analytical expressions
for benchmark and standard good-deal bounds. For both models, our findings show that our benchmark
results generate much tighter bounds. A deep analysis of the properties of option prices and bounds
involving a sensitivity analysis and analytical derivation of Greeks for both option prices and bounds is
also presented. These results provide strong practical applications taking into account the relevance of
pricing and hedging strategies for traders, financial institutions, and risk managers.
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1. Introduction

Under the assumption of complete markets, every contingent
claim can be replicated by a portfolio formed of the underlying ba-
sic assets of the market. In this case, the equivalent martingale
measure and the market price of risk are unique and, then, the
price of any security is uniquely determined by this martingale
measure. Nevertheless, in the real world this situation barely hap-
pens and there can be (infinitely) many equivalent martingale
measures.

When there are sources of risk that are not directly traded (such
as stochastic volatility, jumps or weather) the assumption of com-
plete market fails. Staum (2008) surveys many approaches to pric-
ing and hedging derivative securities under incomplete markets. As
there will not exist a unique martingale measure, there will exist
infinitely many arbitrage-free price processes for a certain financial
security. Then, it can be interesting to derive no-arbitrage bounds
on asset prices and obtain a no-arbitrage interval, where the price
of the asset should lie.

Several papers have computed bounds on option prices. For in-
stance, Basso and Pianca (2001) consider a state-preference ap-
proach and provide lower and upper bounds for European option
prices by solving a non-linear optimization problem. No-arbitrage
bounds can also be computed using information about prices of
other options on the same underlying asset, see Bertsimas and

Popescu (2002) or d’Aspremont and El Ghaoui (2006), among oth-
ers. Working in discrete-time, Reynaerts et al. (2006) focus in Cox
et al. (1979) model with daily time step and derive bounds on
prices for arithmetic Asian options with discrete sampling. These
bounds can also be obtained assuming an incomplete knowledge
of the underlying price distribution. For example, Zuluaga et al.
(2009) derive closed-form semi-parametric bounds for the payoff
of a European call option, given up to third-order statistical mo-
ments for the underlying asset distribution at maturity.

Considering incomplete markets, Bernardo and Ledoit (2000)
and Cochrane and Saá-Requejo (2000) try to find no-arbitrage
bounds on prices as tight as possible using the stochastic discount
factor (SDF) as starting point.1 Then, both papers restrict the pricing
kernel to derive these bounds. Extracting a paragraph from Franke
et al. (2007, p. 215), ‘‘Cochrane and Saá-Requejo (2000) show that
the option price can be bounded by limiting the variance of the pric-
ing kernel. In similar vein, Bernardo and Ledoit (2000) show that the
option price can be bounded by limiting the convexity of the pricing
kernel.’’ The intuition behind these two papers is that investors will
choose a trading asset price according to some optimality criterion.
As mentioned in Pinar et al. (2010, p. 771), ‘‘in Cochrane and Saá-
Requejo (2000), the absence of arbitrage is replaced by the concept
of a good deal, defined as an investment with a high Sharpe ratio.
While they do not use the term ‘‘good-deal’’, Bernardo and Ledoit
(2000) replace the high Sharpe ratio by the gain-loss ratio.’’
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In more detail, Bernardo and Ledoit (2000) analyze different
investment opportunities using the gain-loss ratio as a performance
measure using a benchmark or reference asset pricing model. They
demonstrate that a high gain-loss ratio is related to SDF’s that are
‘‘specially’’ far from the benchmark SDF. In this way, an appropriate
benchmark SDF can tighten the no-arbitrage bounds and the corre-
sponding no-arbitrage interval. Inspired by this paper, Pinar et al.
(2010) apply linear programming to price and hedge contingent
claims in a multi-period setting and propose an optimality crite-
rion, the ‘‘k gain-loss ratio’’, that treats asymmetrically gains and
losses. The pricing bounds obtained are tighter than the no-arbi-
trage ones and, as expected, converge to the no-arbitrage ones as
the gain-loss preference parameter tends to infinity. These authors
also show that a unique claim price may be found for a limiting
case of the risk aversion parameter.

Alternatively, Cochrane and Saá-Requejo (2000) also measure
the attractiveness of an investment but using the Sharpe ratio
and suggested to rule out usual arbitrage opportunities with too
high Sharpe ratios. Thus, they obtain tighter price bounds that
are named benchmark good-deal (BGD) bounds. Several authors
have dealt with this approach and proposed different methodolo-
gies to compute this type of bounds. For instance, Cerný and
Hodges (2002) present the theory of good-deal pricing in financial
markets and shows that ‘‘any such technique can be seen as a gen-
eralization of no-arbitrage pricing and that, with a little bit of care,
it will contain the no-arbitrage and the representative agent equi-
librium as the two opposite ends of a spectrum of possible no-
good-deal equilibrium restrictions.’’ In a related paper, Cerný
(2003) replaces the Sharpe ratio (connected to quadratic utility)
with a generalized Sharpe ratio based on an arbitrary increasing
smooth utility function and shows that ‘‘for Itô processes Cochrane
and Saá-Requejo (2000) bounds are invariant to the choice of the
utility function, and that in the limit they tend to a unique price
determined by the minimal martingale measure’’.

Björk and Slinko (2006) extend the setting in Cochrane and Saá-
Requejo (2000) by studying arbitrage-free good-deal pricing
bounds for derivative assets and presented results for the Mer-
ton-jump diffusion model. Additionally, they derive extended Han-
sen–Jagannathan bounds for the Sharpe ratio process in the point
process setting. Albanese and Tompaidis (2008) consider the
good-deal pricing literature and perform a dynamic risk-reward
analysis for a type of time-based hedging strategies in the presence
of transaction costs. Pinar (2008) uses an arbitrage-adjusted
Sharpe-ratio criterion and convex optimization and provides
bounds on contingent claim prices that are tighter than the no-
arbitrage ones. Finally, Bondarenko and Longarela (2009) present
asset price bounds as the result of an optimization problem over
a set of admissible SDF’s. They consider the option pricing model
presented in Heston (1993) and assume certain limits for the vol-
atility risk premium. They derive closed-form solutions for the BGD
bounds and for a particular case, standard good-deal (GD) bounds,
showing that the former are much tighter than the latter.

Continuing with this research area, our paper focuses on com-
puting and analyzing BGD and GD bounds for different asset prices
under two stochastic volatility option pricing models, that intro-
duced in Heston (1993) and an extension of that posited in Schöbel
and Zhu (1999). In this way, we can get an insight into the effects
of different specifications for the stock volatility process on the
aforementioned bounds.

Heston (1993) generalizes the classical model for stock prices
presented in Black and Scholes (1973) allowing the stock volatility
to follow a ‘‘square-root’’ (CIR-type) stochastic process as pre-
sented in Cox et al. (1985). Additionally, Schöbel and Zhu (1999)
extended the stochastic volatility model of Stein and Stein
(1991), where the stock volatility follows an Ornstein–Uhlenbeck
process. They allow correlation to exist between the underlying

stock returns and the instantaneous volatility and found a
closed-form expression for option prices.

As these two models deal with stochastic volatility, markets are
incomplete. However, both provide unique closed-form expres-
sions for the prices of certain securities assuming a certain func-
tional form of the market price(s) of risk of the corresponding
factor(s). In fact, each functional form is associated to a martingale
measure and, thus, to a price for the security.

This paper contributes to the existing literature in three ways:
firstly, we analyze deeply Bondarenko and Longarela (2009) and
fix different errors in their numerical analysis. One of our main re-
sults is that, now, the difference between GD and BGD bounds is
stronger than that previously reported by these authors. Secondly,
we extend the Schöbel and Zhu (1999) model allowing the market
price of risk of the volatility to be different from zero. In this ex-
tended model, with no new mathematical ideas, we also obtain
analytical expressions for option prices and their bounds. Numeri-
cal illustrations are shown for all the bounds obtained.

Our final contribution is that, for both models, extensive sensi-
tivity analysis are carried out studying how changes in the models’
parameters affect prices and bounds. Additionally, we also imple-
ment a hedging analysis by computing several Greeks for prices
and bounds. Computation of these Greeks is relevant because, as
shown in Carr (2001), these amounts can be interpreted as the val-
ues of certain quantoed contingent claims. Besides, as this author
states, ‘‘this interpretation allows one to transfer intuitions regard-
ing values to these Greeks and to apply any valuation methodology
to determine them’’.

The structure of the paper is as follows. Section 2 describes the
theoretical framework that is needed to find the bounds on option
prices. Stochastic volatility models are presented in Section 3. Sec-
tion 4 derives analytical expressions for option prices and their
bounds under these models. A deep analysis of the properties of
option prices and bounds involving a sensitivity analysis and der-
ivation of Greeks for both option prices and bounds is included
in Section 5. Finally, Section 6 summarizes the main findings and
conclusions.

2. Theoretical framework

We present now our theoretical framework. Consider a proba-
bility space (X,F,P) with the corresponding filtration {Ft}tP0. As-
sume that we have a bond that pays the risk-free rate rt, a risky
asset St (stock), and one (non-tradable) state variable Vt. Let
Ws

t ;W
v
t

� �
be two standard and independent Brownian motions

and let ht ¼ hs
t ;h

v
t

� �
be an adapted two dimensional process, which

satisfies the Novikov condition. Departing from the probability
measure P, we define the measure Q via the Radon–Nikodim deriv-
ative, that is

dQ
dP
¼ nT

where for all t

nt ¼ exp �
Z t

0
hu dWu �

1
2

Z t

0
khuk2 du

� �
and n is a P-martingale with expected value equal to one. The SDF
process is defined as

Kt ¼ Btnt

where Bt ¼ exp �
R t

0 rudu
� �

. Applying Itô’s lemma, we get that

dKt

Kt
¼ �rt dt � h0t dWt

We can define the benchmark model in terms of the vector process
h�t ¼ h�st ; h

�v
t

� �
with the corresponding martingale measure, Q⁄, and
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