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a b s t r a c t

This paper deals with the prognosis of complex systems using stochastic model-based techniques. Prog-
nosis consists in this case in computing the distribution of the Remaining Useful Life (RUL) of the system
conditionally to available information. In so doing, three main challenges arise from the industrial con-
text. First, the model should unify the two classical approaches to describing complex systems: the bot-
tom-up and the top-down approaches. The former uses elementary interacting components whilst the
latter models the system’s physical behavior by means of a set of differential equations. Second, the prog-
nosis must integrate online information to provide a specific result for each system depending on their
life events. Online information can take different forms (e.g. inspections, component faults, non detection
or false alarm, noisy signal) which must all be considered. Third, the prognosis must supply ready, mean-
ingful numerical results, the error of which must also be under control. This paper proposes a method
addressing those challenges. The method is illustrated with two different examples: a simplified
spring-mass system and a pneumatic valve for aeronautical application.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the aeronautical industry, health management and mainte-
nance processes are among the main research topics for economi-
cal, ecological and industrial reasons (Inman et al., 2005;
Vacthsevanos et al., 2006). However, the first challenge is to model
industrial systems and their degradations. The variety and number
of sources of uncertainty (e.g. forecast, complex system, unknown
degradation process) encourage a probabilistic approach. System
modelling can take various forms: macroscopic considerations
(e.g. interacting components in or precise physical modelling
(Daigle and Goebel, 2010), (Guan et al., 2009). This paper adopts a
probabilistic method which considers both standpoints: the
Piecewise Deterministic Markov Processes (PDMPs) introduced by
Davis (1993) and studied by Jacobsen (2006) and Cocozza-Thivent
(2011).

An interesting maintenance approach consists in using condi-
tion-based maintenance (CBM) to act on the system based on its
current state and before its failure (Jardine et al., 2006). In the
framework of control-limit decision rules, the CBM decision de-
pends on an indicator associated with some thresholds (Jardine
et al., 2006). It is often a degradation indicator as in Dieulle et al.
(2003). Huynh et al. (2012) compare CBM strategies using degrada-
tion or age indicators.

A third indicator appeared recently: the Remaining Useful Life
(RUL) of the system (Saxena et al., 2010; Vacthsevanos et al.,
2006). It represents the remaining time before a failure occurs.
Its definition in a CBM context remains unclear (see Jardine et al.
(2006) for a partial definition). Moreover, in the literature, the
RUL is computed using data only (Jardine et al., 2006, 2011),
time-series forecasting (Yan et al., 2004), neural networks
(Zemouri et al., 2003; Yu et al., 2006, 2012) or neuro-fuzzy systems
(Wang et al., 2004) but never using models nor physics of failure.
The RUL seems however of particular interest in this case, because
unlike other indicators, it takes into account the future evolution of
the system (Sikorska et al., 2011). After proposing an adapted def-
inition of the RUL in such case, this paper focuses on the computa-
tion of this indicator.

The main contribution of this work is the proposition of a meth-
odology to compute the RUL conditional on available observations
of a system modeled with a PDMP. It consists of a two-step meth-
od. First, it requires the calculation of the conditional distribution
of the system model states based on available information. Second,
it involves the calculation of the reliability of the system with an
initial state given by the previous law. Both steps are investigated,
from theory to numerical implementation.

The remainder of this paper is organized as follows: Section 2
presents the mathematical problem associated with prognosis,
and the PDMP model; Section 3 describes the two-step methodol-
ogy to compute the RUL; Section 4 illustrates the method with two
examples: one academic (spring-mass system) and the other aero-
nautical (pressure valve within the BLEED air system); Section 5
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concludes the discussion and enumerates different perspectives for
future research.

2. System modelling and problem statement

2.1. Piecewise deterministic Markov process

Industrial systems are fundamentally multiphysics and can be
considered at different scales, while their degradation processes
are more or less known. A known degradation evolution often
leads to a physical model (Vacthsevanos et al., 2006). When degra-
dation process is unknown or when failure is totally random, one
can use Poisson processes (Gaudoin and Ledoux, 2007) whereas a
pure jump Markov process (Aven and Jensen, 1999) is well-suited
to emphasize the system view of interacting components. For the
industrialization of prognosis, one of the main challenges is to find
a unified framework for all of those cases, and to develop adapted
prognosis algorithms within this framework.

This purpose can be achieved through Piecewise Deterministic
Markov Process (PDMP). PDMP’s were first introduced by Davis
(1993), and studied by Jacobsen (2006). They represent determinis-
tic trajectories interspersed with random gaps. On the one hand, the
deterministic motion allows us to consider continuous phenomena,
which can either be the impact of some environmental stress fac-
tors (e.g. pressure, temperature) or the evolution of a physical deg-
radation (e.g. crack propagation, corrosion). On the other hand, the
gaps can model shocks or modifications in the degradation process,
but they can also represent some changes in the state of other re-
lated components, or some maintenance tasks. Chiquet et al.
(2009) use a PDMP to model crack growth. The deterministic mo-
tion represents the physical model of crack propagation, and the
jumps allow us to consider shocks which influence the degradation.
On the contrary, Lair et al. (2010) use a PDMP for system modelling,
where the deterministic motion is the sole calendar time, and the
jumps represent failures of components.

The PDMP’s include non-homogeneous Poisson processes (even
with covariates), pure jump Markov processes and deterministic
models. The main modelling assumption within PDMP’s is that
randomness impacts the system only at discrete times. The PDMP’s
are irrelevant to describe ‘‘continuous‘‘ randomness, which should
be considered through other processes such as Gamma processes
(Castro et al., 2012; Huynh et al., 2012; van Noortwijk (2009))
which implies that degradation increases through permanent
occurrences of very small increments.

In this paper, the definition of a PDMP refers to Cocozza-Thivent
(2011), which is more general than Davis (1993) and Jacobsen
(2006). One must define:

1. the deterministic motion, with a function w,
2. the jump process, denoted (Xn,Tn)nP0, where Xn represents the

state of the system after the jump n, at time Tn.

The jump process must be a renewal Markov process (Jacobsen,
2006). It means that the law of the next jump (Xn+1,Tn+1 � Tn) de-
pends on the past X0,T0, . . . ,Xn,Tn only through the value of the last
position Xn. This law is given by N(Xn,.,.), where N = (N(x,dz,dt)) is
called the renewal Markov kernel of the process.

Let us consider a Polish space (E,e), which represents the possi-
ble states of the system. A process Z with values in E is a PDMP if it
can be written as follows:

ZðtÞ ¼ wðXn; t � TnÞ; Tn 6 t < Tnþ1; ð1Þ

with the following assumptions:

1. w(x, t + s) = w(w(x, t),s) for all (s, t), and s ? w(x,s) is right
continuous with left hand limits "x;

2. (Xn,Tn)nP0 is a renewal Markov process, with T0 = 0 by con-
vention, and with kernel N(x,dz,dt) = dFx(t)Q(w(x, t),dz)
such as:
� dFx is the probability function of min(Sx,a(x)) with

– Sx random variable with hazard rate b(w(x, t)),
– aðxÞ 2 Rþ deterministic time such as a(w(x,u)) =

a(x) � u
� Q is a probability of transition on E � E.

In this formula, the function dFx represents the law of the time
before the next jump from position x, and Q(z, �) represents the law
of the position after a jump from position z. The assumptions on w
are especially satisfied when w is the solution of an ordinary differ-
ential equation, as is the case for most of the physical models com-
ing from mechanical considerations.

2.2. Problem statement

The degradation of the system is then modeled using a PDMP
Z ¼ ðZtÞt2Rþ with values in a probability space (E,e). The random
variable Zt represents the state of the system at time t. As usual
with PDMP’s (Davis, 1993), E is an hybrid space, i.e. E ¼ Rd � D
with d P 0 and D a finite discrete space. This allows us to consider
very general evolutions, with both continuous (e.g. temperature,
crack growth) and discrete (e.g. on/off button, shock) phenomena,
and different degradation modes.

The useful domain is modeled through a non empty subset U(E,
corresponding to the authorized states of our system. Its comple-
mentary is denoted U ¼ E nU. Thus U represents acceptable degra-
dation states of the system, and U the states to avoid. Because
prognosis is related to maintenance applications and not safety
constraints, U may be different from the failure states of the sys-
tem. The event fZt 2 Ug means that the system could still work,
but is not able to fulfill its requirements (fuel consumption, pas-
sengers entertainment, etc.) anymore.

For prognosis, the interesting quantity at time t is the remaining
time before Z escapes from U, i.e. the remaining useful life of the
system:

Rult ¼ inffs P t; Zs R Ug � t ð2Þ

Since Z is a stochastic process, Rult is a random variable for
each t. It is then characterized by its probability distribution func-
tion (PDF) LðRultÞ. This function provides an idea of the remain-
ing lifetime for the system under consideration. Besides, it includes
typical quantities of interest (Jardine et al., 2006):

� the mean residual life with confidence bounds;
� the reliability until a time horizon;
� the time horizon corresponding to a risk of failure (a quan-

tile of the PDF).

In order to provide a prognosis regarding a system specifically,
it is essential to integrate the information on that particular sys-
tem, available through monitoring or inspections.

The impact of information is illustrated in Fig. 1 with a one-
dimension process. Scheduled preventive maintenance is based
on a RUL curve from the stochastic model of the system without
specific information, illustrated in Fig. 1a. Condition-based mainte-
nance must consider the knowledge of the system state. Let us con-
sider two different scenarios of observations. The first scenario
(Fig. 1b) is an ideal case: one has a perfect knowledge of the past
degradation of the system, of its actual state, and it evolves in aus-
picious conditions. Prognostic leads to the dashed curve result. The
RUL with this information is more accurate than the previous one.
The second case (Fig. 1c) is more realistic. The past observations
(i.e. the triangles) are only partial in time and space, as well as
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