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a b s t r a c t

We introduce a journey planning problem in multi-modal transportation networks under uncertainty.
The goal is to find a journey, possibly involving transfers between different transport services, from a
given origin to a given destination within a specified time horizon. Due to uncertainty in travel times,
the arrival times of transport services at public transport stops are modeled as random variables. If a
transfer between two services is rendered unsuccessful, the commuter has to reconsider the remaining
path to the destination. The problem is modeled as a Markov decision process in which states are defined
as paths in the transport network. The main contribution is a backward induction method that generates
an optimal policy for traversing the public transport network in terms of maximizing the probability of
reaching the destination in time. By assuming history independence and independence of successful
transfers between services we obtain approximate methods for the same problem. Analysis and numer-
ical experiments suggest that while solving the path dependent model requires the enumeration of all
paths from the origin to the destination, the proposed approximations may be useful for practical pur-
poses due to their computational simplicity. In addition to on-time arrival probability, we show how tra-
vel and overdue costs can be taken into account, making the model applicable to freight transportation
problems.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The urban itinerary planning problem involves determining a
path, possibly involving transfers between different transport
modes, from a specified origin to a similarly specified destination
in a transport network. Common criteria used for evaluating
itineraries include the total duration, number of transfers and cost
(Androutsopoulos and Zografos, 2009; Pun-Cheng, 2012).

Passenger information systems provide real-time information
on the status of transport services (buses, trams, trains, ferries,
etc.) via mobile devices and displays at public transport stops. This
makes it possible for a commuter to dynamically modify the
planned journey in case of a delay or cancelation. For example, if
a transfer from a transport service to another is unsuccessful due
to a delay, the commuter may reconsider the remaining path to
the destination.

We study a new objective for journey planning in scheduled
public transport networks, motivated by uncertainty in travel
times of transport services. Our goal is to maximize the reliability
of a journey. In contrast to existing itinerary planning algorithms
designed for scheduled public transport networks, where the path
is a priori optimized with respect to an objective, for example,
(Androutsopoulos and Zografos, 2009), our approach is to design

the journey in a way that the probability of reaching the destina-
tion in time is maximized, even if some transfers are rendered
unsuccessful in the course of time.

In the scheduling of an activity of random duration in general
and in traveling under congested conditions in particular, the value
of reliability is seen to be significant (Fosgerau and Karlström,
2010). Brownstone and Small (2005) and Small et al. (2005) argue
that there is substantial heterogeneity in the valuation of reliability
among motorists. In an empirical study on commuter behavior in
California, where commuters chose between a free and a variably
tolled route, the model in (Lam and Small, 2001) suggested that
the average value of reliability is $15.12 per hour for men and
$31.91 for women (in 1998 US dollars).

An example clarifying the main difference between stochastic
and deterministic journey planning is shown in Fig. 1. The four
nodes represent public transport stops (A,B,C,D) and the arrows
between them represent scheduled public transport services
(1, . . . ,5) operating within a specific time horizon. Each transport
service has a specific schedule determined by the scheduled depar-
ture and arrival times shown next to the arrows.

(i) Let us first consider the deterministic case where the realized
departure and arrival times of services are assumed to be
equal to the scheduled departure and arrival times. For a
commuter traveling from A to D, there are three feasible
journeys: (1,2), (3,4) and (3,5). In order to reach D as fast
as possible, the commuter should follow the path (1,2).
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(ii) In the stochastic case, the realized departure and arrival
times of services are not necessarily equal to the scheduled
times. A transfer from a service to another may fail due to
a delay, even if the transfer was feasible according to the
deterministic schedule. For example, if the commuter ini-
tially chooses service 1, the success of the journey from A
to D is dependent of the success of the transfer from 1 to 2
at stop B. Assuming that services 1 and 3 are equally likely
to be delayed, it might be reasonable to initially choose ser-
vice 3: There are more potential transfer options after leg 3.

More generally, in the model presented in this paper, a com-
muter wishes to travel from an origin node vo to a destination node
vd within a time horizon [0,T] using different transport services.
Each transport service is represented as a sequence of legs. Each
leg is associated with a start node and end node, as well as a random
start time and a random end time. Adjacent nodes in the network
are connected with similarly defined walking legs.

A path from the origin to the destination is represented as a se-
quence of legs, in which the start node of each leg is equal to the
end node of the previous leg. We assume that at the end of a leg,
the commuter receives information on which services have already
visited the end node and which are yet to arrive. In other words,
the customer ‘‘sees’’ the available successor legs of the current
leg and may choose to (i) stay in the vehicle, (ii) transfer to another
vehicle or (iii) get off the vehicle and start walking towards a near-
by stop (or the destination). By using the start and end time distri-
butions of legs, we define an optimal policy specifying the actions
that are executed in different situations in order to maximize the
probability of reaching the destination before T.

In addition to public transport, a similar journey planning prob-
lem arises in freight transportation by for-hire carriers. For this
purpose, we show how travel and overdue costs can be incorpo-
rated in the model.

In summary, the problem can be characterized as a dynamic
and stochastic path finding problem. Such problems are often
modeled as Markov decision processes (Psaraftis and Tsitsiklis,
1993; Polychronopoulos and Tsitsiklis, 1996), in which the actions
of a decision maker at a given state are independent of all previous
actions and states. We first present a conditional Markov model, in
which the path history is included in each state by defining states
as sequences of legs in the transport network. That is, the current
state is determined by the path taken so far. This model is further
approximated by means of history independent models, in which
the current state is defined as the current leg.

The remainder of this document is organized as follows: The jour-
ney planning problem under uncertainty is formalized in Sections 2,
3 and an algorithm that generates an optimal policy for the condi-
tional Markov decision process is presented in Section 4. In Section
5, we approximate the conditional solution by assuming history
independence and compare the solutions by analysis. The solution
methods are evaluated by numerical experiments in Section 6.

1.1. Related work

There is a vast literature devoted to the deterministic path-find-
ing problem in a transit network. Zografos and Androutsopoulos
(2008) classify the approaches into the following types of formula-
tions: (1) the headway-based model, in which a constant headway
for each transit line is assumed (Wong and Tong, 1998) and (2) the
schedule-based model, which assumes a fixed route and timetable
for each transit line.

Our approach stems from model 2, for which most existing
solution approaches are based on label correcting, label setting or
branch-and bound, see for example (Zografos and Androutsopou-
los, 2008; Peng and Huang, 2000; Modesti and Siomachen, 1998;
Huang and Peng, 2001; Huang and Peng, 2002; Horn, 2003; Tong
and Richardson, 1984; Tong and Wong, 1999; Ziliaskopoulos and
Wardell, 2000; Ziliaskopoulos and Mahmassani, 1993; Brub et al.,
2006; Cooke and Halsey, 1966; Cai et al., 1997; Chabini, 1998; Kos-
treva and Wiecek, 1993; Hamacher et al., 2006; Androutsopoulos
and Zografos, 2009). Heuristic solutions, that are useful when the
fast solution of the problem is essential, are presented in (Bander
and White, 1991 and Tan et al., 2007).

In addition to the above-mentioned itinerary planning models,
most of which are deterministic, our approach is closely related to
the stochastic shortest path problem (SSPP). There are many differ-
ent versions of the problem considered in the literature, each with a
different objective for the optimal path (Murthy and Sarkar, 1997).
Early studies related to the problem defined the optimal path to be
the one that maximizes the decision maker’s expected utility. This
objective is motivated by the Von Neumann–Morgenstern approach
of preference judgments under uncertainty (Loui, 1983). Bard and
Bennett (1991) present heuristic methods involving Monte-Carlo
simulation to solve the SSPP with a general non-increasing utility
function. An exact algorithm for the SSPP with a quadratic utility
function is presented in (Mirchandani and Soroush, 1985).

Recent studied objectives for the stochastic shortest path prob-
lem include (i) the maximization of the probability that the length
of the path does not exceed a threshold value or finding the path

Fig. 1. The difference between stochastic and deterministic journey planning for a commuter traveling from A to D. The four points represent public transport stops (A,B,C,D)
and the arrows between them represent public transport services (1, . . . ,5). Initially, there are three possible journeys from A to D: (1,2), (3,4) and (3,5). If the commuter
initially chooses service 1, the success of the journey is dependent of the success of the transfer from 1 to 2 at stop B. If the commuter chooses service 3 first, the destination is
reached if one of the transfers 3 ? 4 or 3 ? 5 is successful at stop C.

456 L. Häme, H. Hakula / European Journal of Operational Research 225 (2013) 455–471



Download English Version:

https://daneshyari.com/en/article/6898119

Download Persian Version:

https://daneshyari.com/article/6898119

Daneshyari.com

https://daneshyari.com/en/article/6898119
https://daneshyari.com/article/6898119
https://daneshyari.com

