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a b s t r a c t

In this paper we present a generalization of the weighted voting method used in the exploitation phase of
decision making problems represented by preference relations. For each row of the preference relation
we take the aggregation function (from a given set) that provides the value which is the least dissimilar
with all the elements in that row. Such a value is obtained by means of the selected penalty function. The
relation between the concepts of penalty function and dissimilarity has prompted us to study a construc-
tion method for penalty functions from the well-known restricted dissimilarity functions. The develop-
ment of this method has led us to consider under which conditions restricted dissimilarity functions
are faithful. We present a characterization theorem of such functions using automorphisms. Finally,
we also consider under which conditions we can build penalty functions from Kolmogoroff and Nagumo
aggregation functions. In this setting, we propose a new generalization of the weighted voting method in
terms of one single variable functions. We conclude with a real, illustrative medical case, conclusions and
future research lines.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Consider:

� a system of n numerical inputs (x1, . . ., xn),
� a system of q aggregation functions (M1, . . ., Mq) (see [1,7]),

� the system of values ðy1 ¼ M1

n

i¼1
xi; . . . ; yq ¼ Mq

n

i¼1
xiÞ (each of

them obtained by aggregating n inputs with different
aggregation functions).

The notion of a penalty based aggregation function (see [8,9,25])
allows us to determine the aggregated value yj which is the least
dissimilar to the set of inputs {x1, . . ., xn}.

One of the most widely used methods in decision making is the
weighted voting method (see [18–20]). It consists in calculating
the weighted arithmetic mean of the elements in each of the rows
of the preference relation provided by the expert (see [10]), and
selecting the alternative associated with the row with largest value
as the solution. This description of the method poses the question

of whether the use of the weighted arithmetic mean is the best op-
tion for all possible scenarios.

This consideration has led us to the objective of this paper: to
use the concept of penalty function to determine, in a decision
making problem, which aggregation function to apply to each
row of the considered preference relation so that the result (out-
put) is the least dissimilar to the elements (inputs) in that row.
Moreover, the new method should allow us, under suitable condi-
tions, to recover the weighted voting method.

In the notion of penalty function, the concept of dissimilarity
plays a very important role. It is known that in some applications,
such as image processing, the so-called restricted dissimilarity func-
tions (see [4]) are used to measure how dissimilar two areas (ob-
jects) are. These considerations lead us to use these (restricted)
dissimilarities to build penalty functions since, as we will prove
in this work, restricted dissimilarity function can be easily built
by means of automorphisms (see [3,15]), whereas this is not gen-
erally the case for dissimilarity functions.

The aggregation, in a proper way, of convex or quasi-convex dis-
similarity functions can generate penalty functions. However, the
difficulty to characterize the convexity property (and the quasi-
convexity property) for dissimilarity functions [25] as well as for
restricted dissimilarity functions, on one hand, and the theoretical
developments in [8,25] on the other hand, have led us to study
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convex faithful restricted dissimilarity functions. We also know
that we can construct distances in the sense of Liu between fuzzy
sets (see [24,13,5,4]) by properly aggregating restricted dissimilar-
ity functions. This fact has led us to build penalty functions aggre-
gating, in a proper way, faithful restricted dissimilarity functions.
In particular, we are going to use weighted quasi-arithmetic aggre-
gation functions (see [8]). Such aggregations allow:

1. To build penalty functions using one single variable func-
tions and faithful restricted dissimilarity functions.

2. To recover the weighted voting method in decision making.

We have organized this work as follows: In the preliminaries
section we introduce the basic concepts that are needed for subse-
quent developments. In Section 3 we study the relations between
restricted dissimilarity functions, negations and automorphisms.
In Section 4 we introduce the concept of faithful restricted dissim-
ilarity function and we present a characterization theorem by
means of automorphisms. We also present a construction method
of convex faithful restricted dissimilarity functions. Then in Section
5 we study the construction of penalty functions from convex
faithful restricted dissimilarity functions and we analyze such con-
structions when we use Kolmogoroff and Nagumo aggregation
functions. In Section 6 we apply our theoretical developments to
decision making and we present an algorithm for the exploitation
phase that generalizes the weighted voting method. We present
two easier versions of the algorithm depending on the type of used
functions. We also present a decision making problem for selecting
medication for a patient suffering from hypertension. We finish
with conclusions and references.

2. Preliminary definitions

Zadeh [29] introduced the fuzzy set theory in 1965. A fuzzy set
A on the universe U – ; is a mapping A: U ? [0,1]. We will denote
by FðUÞ the set of all fuzzy sets defined on the finite, non-empty
referential set U (Cardinal(U) = n). A fuzzy negation is a non-increas-
ing function N: [0,1] ? [0,1] such that N(0) = 1 and N(1) = 0. If the
mapping N is strictly decreasing, then N is called a strict negation.
A strong negation is a non-increasing function N: [0,1] ? [0,1]
which is involutive; that is, N(N(x)) = x for any x 2 [0,1]. Recall that
a function N: [0,1] ? [0,1] is a strong negation if and only if there
exists an automorphism (a strictly increasing bijection) u:
[0,1] ? [0,1] such that N = Nu, where Nu(x) = u�1(1 � u(x)) for
all x 2 [0,1]. Due to their definition, strong negations are continu-
ous and strictly decreasing functions, and satisfy the boundary
conditions N(0) = 1 and N(1) = 0.

2.1. Aggregation functions

Definition 1 [1,6,7,16]. A mapping M:[a,b]n ? [a,b] is an aggre-
gation function if it is monotone non-decreasing in each of its
components and satisfies M(a, a, . . ., a = a and M(b, b, . . ., b) = b.

In general we will take [a,b] = [0,1].

Definition 2 [15]. An aggregation function M is called averaging
or a mean if

minðxÞ ¼minðx1; . . . ; xnÞ 6 Mðx1; . . . ; xnÞ 6 maxðx1; . . . ; xnÞ
¼maxðxÞ

for all (x1, . . ., xn) 2 [a,b]n.
Any averaging aggregation function is idempotent, and also the

converse is true.

2.2. Penalty functions

We need to measure the disagreement or dissimilarity between
an input x = (x1, . . ., xn) and the corresponding output y. We are going
to call such a measure a penalty function. Our aim is to find for a given
penalty function the aggregation function that minimizes it.

Definition 3. [2,8] A penalty function is a mapping
P : ½a; b�nþ1 !Rþ ¼ ½0;1� such that:

(1) P(x,y) = 0 if xi = y for all i = 1, . . ., n;
(2) P(x,y) is quasi-convex in y for any x; that is, for each fixed

x 2 [a,b]n the inequality

Pðx; ky1 þ ð1� kÞy2Þ 6 maxðPðx; y1Þ; Pðx; y2ÞÞ

holds for any k 2 [0,1] and any y1, y2 2 [a,b].

Let P be a penalty function. We call penalty based function [8] (or
function based on the penalty function P) the mapping

f ðxÞ ¼ arg min
y

Pðx; yÞ;

if y is the only minimizer and y ¼ cþd
2 if the set of minimizers is given

by the interval [c,d].
A penalty based function is always idempotent, but not neces-

sarily monotone (see [8]). The following theorem states that also
the converse holds when referring to idempotency.

Theorem 1 [8]. Any idempotent function can be represented as a
penalty based function in the sense of Definition 3.

3. Restricted dissimilarity functions, negations and
automorphisms

In [4] the concept of restricted dissimilarity function is introduced
from the concept of equivalence function defined by Fodor and
Roubens in [15]. The conditions that are demanded to restricted
dissimilarity functions allow to develop construction methods
which are much more general than those existing for dissimilarity
functions and moreover, the newly required conditions make that
these measures may be applied in more fields, such as image
processing.

In this section we present some construction methods of re-
stricted dissimilarity functions from automorphisms. We also
study the construction of automorphisms and negations from re-
stricted dissimilarity functions.

Definition 4. [4]. A mapping dR: [0,1]2 ? [0,1] is a restricted
dissimilarity function if:

(1) dR(x,y) = dR(y,x) for every x,y 2 [0,1];
(2) dR(x,y) = 1 if and only if x = 0 and y = 1 or x = 1 and y = 0; that

is, if and only if {x,y} = {0,1};
(3) dR(x,y) = 0 if and only if x = y;
(4) For any x, y, z 2 [0,1], if x 6 y 6 z, then dR(x,y) 6 dR(x,z) and

dR(y,z) 6 dR(x,z).

We will say that dR is a strict restricted dissimilarity function if
for any x, y, z 2 [0,1], if x < y < z, then dR(x,y) < dR(x,z) and
dR(y,z) < dR(x,z).

Example 1. The mapping dR(x,y) = jx � yj provides a simple exam-
ple of restricted dissimilarity function which is strict. On the other
hand, as an example of non-strict restricted dissimilarity function
we can present the following. Take c2]0,1[. Then
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