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a b s t r a c t

In this paper we consider the minimum cost spanning tree model. We assume that a central planner aims
at implementing a minimum cost spanning tree not knowing the true link costs. The central planner sets
up a game where agents announce link costs, a tree is chosen and costs are allocated according to the
rules of the game. We characterize ways of allocating costs such that true announcements constitute
Nash equilibria both in case of full and incomplete information. In particular, we find that the Shapley
rule based on the irreducible cost matrix is consistent with truthful announcements while a series of
other well-known rules (such as the Bird-rule, Serial Equal Split, and the Proportional rule) are not.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Recently, economists have shown a growing interest in net-
works and the literature is becoming rich on various issues and
models, see, e.g. Goyal (2007) and Jackson (2008). In the present
paper we consider the relation between cost allocation and
efficient network structure within the classical minimum cost
spanning tree (MCST) model. Here, a group of agents is to be con-
nected to a source (supplier) in the least costly way and face the
problem of sharing the cost of the efficient network, see, e.g. Shar-
key (1995) – practical examples include district heating, computer
network using a common server, cable tv, chain stores using a
common warehouse, etc.

While the literature typically contains axiomatic analysis and
comparisons of different cost sharing methods there has been less
emphasis on strategic issues concerning practical implementation.
Clearly, agents can have private information about the cost struc-
ture. This information they can use strategically to lower their
own cost at the expense of a loss in social efficiency.

It is well-known that in general we cannot find budget bal-
anced, incentive compatible and efficient cost allocation mecha-
nisms (Green and Laffont, 1977), but under special circumstances
such mechanisms can in fact be constructed, see, e.g. Jackson and
Moulin (1992), Schmeidler and Tauman (1994), Young (1998),
and Moulin and Shenker (2001). For social choice rules Maskin
(1999) and Dasgupta et al. (1979) show that implementability
and monotonicity are equivalent. We consider monotonicity of

cost allocation rules and present compatible results for the MCST
model.

Efficient implementation in general connection networks has
also been the focus of a strand of literature in Computer Science,
see, e.g. Chen et al. (2010) and Kumar and Juarez (2011). Typically,
different so-called cost allocation protocols are analyzed with re-
spect to inefficiency measures such as price of anarchy (POA) and
price of stability (POS).

In the specific context of the MCST model, implementation has
been analyzed in a few recent papers; Bergantinos and Lorenzo
(2004, 2005) and Bergantinos and Vidal-Puga (2010). All three
papers consider existence and properties of Nash equilibria and
subgame perfect Nash equilibria of non-cooperative sequential
bargaining procedures. The first two papers study a real life allo-
cation problem where agents sequentially join an existing net-
work along the lines of the Prim algorithm (Prim, 1957). The
latter paper shows that another Prim-like procedure, where
agents announce their willingness to pay for other agents to con-
nect to the source, leads to a unique subgame perfect Nash equi-
librium in which costs are allocated corresponding to the use of
the Shapley value on the related irreducible cost matrix (dubbed
the Folk-solution in Bogomolnaia and Moulin (2010) and further
analyzed in Bergantinos and Vidal-Puga (2007, 2009) and Houg-
aard et al. (2010)).

Finally, Ozsoy (2007) and Gomez-Rua and Vidal-Puga (2011)
take an axiomatic approach to manipulation using properties of
merge-proofness2 to characterize the Bird rule.
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In the present paper, Section 2 briefly reviews the MCST model
and Section 3 introduces a non-cooperative game form involving
a planner who does not know the link costs and a set of agents
who all know the link costs. First the planner announces the rules
of the game being an allocation rule and an estimation rule. Then
agents announce the link costs, which in turn are used to
estimate a cost matrix and its related set of MCSTs. A particular
MCST is selected at random and the realized (true) link costs
are shared between the agents according to the announced allo-
cation rule.

Compared to the Prim-like sequential mechanisms mentioned
above our approach is different since it is a simple one-shot game,
which is not based on any algorithm for finding the MCST. More-
over, agents’ announcements do not directly influence their cost
shares since these are determined by the realized (true) costs along
the chosen spanning tree.

In Section 4 our main result is established: announcing
the true link costs constitutes a Nash equilibrium if and only if
the associated allocation rule is monotonic (in the sense that
cost shares are weakly increasing in the irreducible cost matrix).
Consequently, monotonic allocation rules such as the Shapley
rule (on the irreducible cost matrix) and the Equal Split rule will
both result in truth-telling Nash equilibria where the planner
can implement the true MCST. However, well-known rules such
as the Bird rule and the Proportional rule fail to satisfy
monotonicity.

In Section 5 we consider an incomplete information version of
the game along the lines of Jackson (1991). We show that truth-
telling remains an equilibrium for monotonic allocation rules. Sec-
tion 6 closes with some final remarks.

2. The MCST model

Recall the minimum cost spanning tree model (see, e.g. Sharkey,
1995). Networks, where a source supplies agents with some homo-
geneous good, are considered. Let 0 be the source and let
N = {1, . . . , n} be the set of agents. A network g over N0 = {0} [ N
is a set of unordered pairs ab, where a, b 2 N0. Let N0(2) be the
set of unordered pairs and let G0 = {gjg � N0(2)} be the set of all
networks over N0.

In a network g two agents a and b are connected if and only if
there is a path i1i2, i2i3, . . . , im�1im such that ihih+1 2 g for
1 6 h 6m � 1 where i1 = a and im = b. A network g is connected if
a and b are connected for all a, b 2 N0. A path is a cycle if it starts
and ends with the same agent. A network is a tree if it contains
no cycles. A spanning tree is a tree where all agents in N0 are con-
nected. There are (n + 1)n�1 spanning trees.

For every pair of agents ab 2 N0(2) there is a cost kab P 0 asso-
ciated with the link between a and b. This cost may be interpreted
as the cost of establishing the link ab. For N0, let the
(n + 1) � (n + 1)-matrix K be the cost matrix (where kaa = 0 for all
a 2 N0). Note that kab = kba since the network is undirected so K is
symmetric around the diagonal. An allocation problem is a set of
agents and a cost matrix (N, K).

For a spanning tree p, let vðN;K; pÞ ¼
P

ab2pkab be the total
cost of p. A minimum cost spanning tree (MCST) is a spanning tree
p such that v(N, K, p) 6 v(N, K, q) for every spanning tree q. For
every allocation problem (N, K) there exists a MCST because the
number of spanning trees is finite. Let v(N, K) denote the mini-
mal cost so there exists a spanning tree p such that v(N, K,
p) = v(N, K) and v(N, K, q) P v(N, K) for every spanning tree q.
If all costs kab are different then there is a unique MCST, but
in general there can be several MCSTs. Indeed, if all costs kab

are equal, then every spanning tree is a MCST. Let T(N, K) be
the set of MCSTs.

2.1. Irreducible matrices

For two matrices K and K0 the matrix K is smaller than K0 if and
only if kab 6 k0ab for all a, b 2 N0. The irreducible matrix C(K) for a
cost matrix K is the smallest matrix C such that v(N, C) = v(N, K)
and cab 6 kab for all a, b 2 N0, see, e.g. Bird (1976) and Aarts and Dri-
essen (1993). For a cost matrix K and a spanning tree p the irreduc-
ible matrix C(K, p) is defined as follows: For every a, b 2 N0, let pab

be the unique path in p from a to b, then cab ¼maxij2pab
fkijg. It is

known that if p⁄ is a MCST, then C(K) = C(K, p⁄). Hence if p⁄ and
q⁄ are MCSTs, then C(K, p⁄) = C(K, q⁄) = C(K), and if p⁄ is a MCST
and p is spanning tree, then C(K, p⁄) is smaller than C(K, p).

2.2. Allocation rules

Let C be the set of allocation problems and their spanning trees
so (N, K, p) 2C if and only if (N, K) is an allocation problem and p is
a spanning tree for (N, K). An allocation rule / : C! RN maps an
allocation problem (N, K) and a spanning tree p to an n-dimen-
sional vector of cost shares /(N, K, p) = (/1(N, K, p), . . . , /n(N, K, p)).

Only allocation rules that are budget balanced, reductionist3 and
continuous are considered.

� Budget-balance:
P

a2N/aðN;K; pÞ ¼ vðN;KÞ for all p 2 T(N, K), so
cost shares add up to the total cost of the MCST.
� Reductionist: /a(N, K, p) = /a(N, C(K, p), p) for all spanning trees p,

so cost shares depend on the irreducible matrix of the chosen
spanning tree.
� Continuity: /(N, K, p) is continuous in K.

Budget-balance and continuity are standard properties of allo-
cation rules. Budget-balance implies that exactly the cost of every
spanning tree is allocated. The reason why reductionist rules are
considered is closely related to our implementation setting where
only costs along the realized spanning tree are observed by the
planner. Thus, by relying on the construction of the irreducible cost
matrix only the revealed cost information is used.

For a spanning tree p, let d(a, b, p) be the unique neighbor of a in
the path pab from a to b in p. Some examples of (continuous, bud-
get-balanced and reductionist) allocation rules include:

� The Equal Split Rule: For all a 2 N

/E
aðN;K;pÞ ¼

vðN;CðK; pÞÞ
n

:

� The Bird Rule: For all a 2 N

/B
aðN;K;pÞ ¼ cabðK;pÞ

where b = d(a, 0, p).
� The Proportional Rule: For all a 2 N

/P
aðN;K;pÞ ¼

c0aðK;pÞP
b2Nc0bðK; pÞ

vðN;Cðk;pÞÞ:

� The Folk Rule: For all a 2 N

/S
aðN;K;pÞ ¼

X
S�N:a2S

ðs� 1Þ!ðn� sÞ!
n!

ðvðS;CSÞ � vðS n a;CSnaÞÞ

where s is the number of agents in S, CS is the projection of C(K, p) on
{0} [ S.4

3 Allocation rules based on the irreducible matrix are denoted reductionist rules in
Bogomolnaia and Moulin (2010).

4 The Folk rule for (N, K) coincides with the Shapley value for (N, C(K)), see
Bergantinos and Vidal-Puga (2007, 2009) and Bogomolnaia and Moulin (2010).
Furthermore, the Folk rule also coincides with the Equal Remaining Obligation Rule
for (N, C(K)) defined in Feltkamp et al. (1994).
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