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a b s t r a c t

Estimating the probabilities by which different events might occur is usually a delicate task, subject to
many sources of inaccuracies. Moreover, these probabilities can change over time, leading to a very dif-
ficult evaluation of the risk induced by any particular decision. Given a set of probability measures and a
set of nominal risk measures, we define in this paper the concept of robust risk measure as the worst pos-
sible of our risks when each of our probability measures is likely to occur. We study how some properties
of this new object can be related with those of our nominal risk measures, such as convexity or coherence.
We introduce a robust version of the Conditional Value-at-Risk (CVaR) and of entropy-based risk mea-
sures. We show how to compute and optimize the Robust CVaR using convex duality methods and illus-
trate its behavior using data from the New York Stock Exchange and from the NASDAQ between 2005 and
2010.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

In quantitative risk management, risk measures are used to
determine a preferential order among financial positions with ran-
dom outcome. Each financial position is seen as a random variable
that maps each state of nature x to a real number. This number
corresponds to the reward ensured by the financial position when
the state x occurs. Risk measures are designed to take into account
the trade-off between the magnitudes of the values that a position
can take, and the risk or variability in these values. Mathematically,
they are mappings of a space of random variables to the extended
real line. The choice of the risk measure determines the investment
risk profile.

A portfolio is a linear combination of some available assets, each
characterized by a cost and a random variable representing their
income, in the limits of a fixed budget. Markowitz (1952) defines
the risk of a portfolio as a weighted sum of its expected return
and its variance. The ratio between the two weights determines
the risk profile of the investor. Since Markowitz’s breakthrough pa-
per, many other risk measures have been introduced. Most notably,
Value-at-Risk (VaR), a quantile of the position’s probability distri-
bution, has been extensively used (RiskMetrics, 1995). However,
VaR has been criticized for not detecting unfavorable behavior in
the tails of the probability distribution (Donnelly and Embrechts,
2010). This observation triggered the introduction of classes of risk
measures that satisfy some desirable properties. For instance, the
class of convex risk measures (Föllmer and Schied, 2002) gathers
monotone and convex mappings that satisfy a translation invari-

ance property (see in Section 2). Every convex risk measure can
be expressed as the conjugate of some ‘‘penalty’’ function defined
in a space of signed measures. This representation can be used to
compute optimal portfolios and to assess their value of flexibility
(Lüthi and Doege, 2005). Moreover, convex risks are closely con-
nected with the concept of the optimized certainty equivalent
introduced in Ben-Tal and Teboulle (2007). Coherent risk measures
(Artzner et al., 1999) forms the subclass of convex risk measures
that are positively homogenous (see Section 2). They can be ex-
pressed as the worst-case expectation of the portfolio outcome
when the probability measure of the assets returns varies in some
uncertainty set (Artzner et al., 1999). For instance, Conditional Va-
lue-at-Risk (CVaR), that is, the expected value of a portfolio if its
loss lies beyond some quantile of its distribution, is such a coherent
risk measure. The composition of a portfolio optimal with respect
to its CVaR can be computed using the dual representation of this
risk measure (Rockafellar and Uryasev, 2000; Shapiro et al., 2009).

Due to the intrinsic uncertainty of the environment they de-
scribe, it can happen that the data defining a problem is not known
exactly. As a result, it is possible that the optimal solution com-
puted for the erroneous problem we have is far from optimal, or
not even feasible, for the actual problem. Robust optimization is
now increasingly used to tackle his issue. It considers that the ac-
tual data of a problem belongs to a predefined uncertainty set S,
then assigns to every feasible point the worse objective value
among all the problems with data in S. The optimal point it returns
is then the feasible point with the best of those worse values, and is
thereby immune to data uncertainties. In linear optimization
problems, Soyster (1973) considers box-type uncertainty sets and
(Ben-Tal and Nemirovski, 1998, 1999, 2000) ellipsoidal ones. In
linear and in mixed integer optimization, problems with budgeted
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uncertainty sets (Ben-Tal et al., 2009) for their constraints are effi-
ciently solved in Bertsimas and Sim (2003, 2004). Interestingly,
minimizing the coherent risk measure of an affine combination
of random variables can be reformulated as a robust optimization
problem; an explicit description of the uncertainty set is given in
Bertsimas and Brown (2009).

Not only the data of the problem can be subjected to errors, but
also the probability distribution model for the random positions,
as it is constructed, among other sources, from possibly corrupted
historical data. Several approaches deal with this issue. A first possi-
bility consists in defining a class of parameterized probability distri-
butions, among which the actual one is determined by standard
parameter estimation procedures. Moreover, these procedures can
yield confidence intervals, which can be used as uncertainty sets
in a robust optimization framework (Bertsimas and Pachamanova,
2008). Robust solutions are unavoidably conservative: due to the
typically infinite number of extra constraints, the obtained return
is often much lower than the non-robust return. Among other tech-
niques to tackle this issue, let us point the one developed in Zymler
et al. (2011). There, the set of constraints ensures a certain minimal
return when the probability parameters belong to a certain small set,
and another minimal return when they belong to another, larger, set.

In this paper, we consider the problem of assessing risk when
the probability measure driving the underlying random process
is not known exactly, but resides in some uncertainty set, called
here the scenarios set. Instead of using a single risk measure for
our whole problem, we have one risk measure per probability
function from our scenario set. In other words, we use a family
of risk measures, each indexed by a probability measure from the
scenarios set. We define our robust risk measure as an appropriate
combination of them. Some of their properties, such as convexity
and coherence can be shown to be transferred to our robust risk
measure (see Propositions 2.1 and 2.2). Our definition is then par-
ticularized to define a robust counterpart to Conditional Value-at-
Risk (CVaR) and to entropy-based risks in the context of two-stage
structured uncertainty sets (see SubSection 3.1 and Section 4 for
precise definitions). We also provide efficient algorithms to com-
pute these risks. Robust CVaR has been successfully used in hy-
dro-electric pumped storage plant management (Fertis and
Abegg, 2010), and has been connected with regularization in port-
folio optimization (Fertis et al., 2011).

Special cases for the Robust CVaR under two-stage structured
uncertainty sets, namely the cases when the probability measures
are discrete or when the probability measure uncertainty set is the
whole set of probability measures on the considered space, have
been already studied (Zhu and Fukushima, 2009). In this paper,
we deal with continuous or discrete probability measures, and
generic norm-bounded uncertainty sets. In the case of Robust CVaR
for continuous distributions, our result enables portfolio optimiza-
tion through the stochastic average approximation method, which
discretizes the sample space (Shapiro et al., 2009). Robust risk
measures with different probability distribution uncertainty sets
have been considered in the past as well. The worst-case CVaR
when certain moments of the assets’ probability distribution are
known can be expressed as a finite-dimensional robust optimiza-
tion problem, and can be efficiently computed if the distribution
is discrete or continuous of a special kind (Natarajan et al., 2009).
The worst-case CVaR can be computed through linear optimization
when the probability distribution is required to replicate the prices
of some European put and call options on the assets (Jabbour et al.,
2008). Portfolio optimization according to worst-case CVaR when
the probability distribution uncertainty set is defined through the
Kantorovich distance has been proved to lead to the uniform
investment strategy (Pflug et al., 2012). The worst-case CVaR under
certain moment information has been considered in the frame-
work of chance constrained optimization, and has been compared

to the worst-case VaR under certain moment information (Zymler
et al., in press).

The paper is structured as follows:

� In Section 2, we define the robust risk measure with reference to
a family of nominal risk measures and an uncertainty set for the
probability measure that drives the random process. We investi-
gate the structure of the robust risk measure when the family of
nominal risk measures contains convex or coherent risks.
� In Section 3, we define Robust CVaR, as the robust risk measure

corresponding to CVaR. When the scenario set is structured in
two stages, and uncertainty is limited in the second-stage prob-
ability distribution, we show how to compute the Robust CVaR
of a position, and how to compute portfolios that optimize the
Robust CVaR. The complexity of the proposed algorithms is
almost the same as the complexity of the corresponding algo-
rithms for CVaR.
� In Section 4, we define the robust entropy-based risks, as the

robust risk measures corresponding to the entropy-based risks.
We show that these risks can be computed using convex opti-
mization methods.
� In Section 5, we compare the performance of the Robust CVaR-

optimal and CVaR-optimal portfolios under various probability
measures. The probability distribution models were con-
structed using historical data of 20 stocks from various sectors
traded in the New York Stock Exchange (NYSE) and the National
Association of Securities Dealers Automated Quotations (NAS-
DAQ) for the period between 2005 and 2010.

2. Robust risk measures and its representation

It is important to know whether the risk measure dened
through the application of the robust optimization paradigm to
deal with probability distribution uncertainty follows certain prin-
ciples of consistent decision making, as the ones required in the
denition of convex and coherent risk measures. The used terminol-
ogy and mathematical background can be found in the appendix.

First, we present the definition of convex risk measures, and the
representation theorem for them (Föllmer and Schied, 2002; Shap-
iro et al., 2009).

Definition 2.1. Consider a probability space ðX;F ;PÞ, and consider
the random variables classes L1ðX;F ;PÞ. A mapping
q : L1ðX;F ; PÞ ! R is called a convex risk measure if it satisfies
the following properties:

� Monotonicity: If X1;X2 2 L1ðX;F ; PÞ, and X1 6 X2;P-a.s., then,
q(X1) P q(X2).
� Translation invariance: If X;A 2 L1ðX;F ; PÞ, and A ¼ a;P-a.s.,

a 2 R, then, q(X + A) = q(X) � a.
� Convexity: If X1;X2 2 L1ðX;F ; PÞ;0 6 k 6 1, then, q(kX1 +

(1 � k)X2) 6 kq(X1) + (1 � k)q(X2).

Let us fix once forever a probability space ðX;F ;PÞ. We view the
probability P as a reference probability measure. To allow for prob-
ability changes in our model, and in contrast with the standard ap-
proach, we do not assume that the probability that drives the
random process of our problem is P, but merely one that is only
minimally related to P. Specifically, with P0 be the set of all prob-
ability measures on ðX;FÞ, let

P � P 2 P0 P � P and
dP
dP
2 L1ðX;F ;PÞ

����� �
; ð2:1Þ

where P � P means that P is absolutely continuous with respect to
P, that is, that every P-negligible set is also P-negligible, and dP=dP
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