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a b s t r a c t

It is of great interest for the problem of how to allocate redundancies in a system so as to optimize the
system performance in reliability engineering and system security. In this paper, we consider the prob-
lems of optimal allocation of both active and standby redundancies in series systems in the sense of var-
ious stochastic orderings. For the case of allocating one redundancy to a series system with two
exponential components, we establish two likelihood ratio order results for active redundancy case
and standby redundancy case, respectively. We also discuss the case of allocating K active redundancies
to a series system and establish some new results. The results developed here strengthen and generalize
some of the existing results in the literature. Specifically, we give an answer to an open problem men-
tioned in Hu and Wang [T. Hu, Y. Wang, Optimal allocation of active redundancies in r-out-of-n systems,
Journal of Statistical Planning and Inference 139 (2009) 3733–3737]. Numerical examples are provided to
illustrate the theoretic results established here.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

It is of great interest to allocate redundant component(s) in a
system in order to optimize the lifetime of the resulting system
in reliability engineering, and system security. This topic has posed
many interesting theoretical problems to which many researchers
have devoted themselves in the past decades; see, for example,
Boland et al. (1992), Shaked and Shanthikumar (1992), Singh and
Misra (1994, 1997), Valdés and Zequeira (2003, 2004, 2006), Valdés
et al. (2010), Brito et al. (2011), Hu and Wang (2009), da Costa Bue-
no (2005), da Costa Bueno and do Carmo (2007), Misra et al. (2009,
2011a,b), and Li and Ding (2010) and the references therein.

In general, there are two ways to allocate redundancies to a sys-
tem: active (or parallel) redundancy allocation, and standby redun-
dancy allocation. The former is used when replacement of
components during the operation of the system is impossible; in
this case the redundancies are put in parallel to components of
the systems which leads to taking the maximum of random vari-
ables. The latter is used when replacement of components during
the operation of the system is possible; in this case the redundancy

starts functioning immediately after the corresponding original
component in the system fails which leads to taking the convolu-
tion of random variables.

Let X1, X2 and X be independent random variables representing
the lifetimes of the components C1, C2 and the redundancy R,
respectively. Suppose that S is a series system consisting of the
components C1 and C2 and the problem is how to allocate the
redundancy R so that the resulting system performs better. In ac-
tive redundancy case, one wants to compare the lifetimes

U1 ¼ ^ð_ðX1;XÞ;X2Þ and U2 ¼ ^ðX1;_ðX2;XÞÞ;

where the symbols ‘^’ and ‘_’ mean min and max, respectively. In
standby redundancy case, one wants to compare the lifetimes

W1 ¼ ^ðX1 þ X;X2Þ and W2 ¼ ^ðX1;X2 þ XÞ:

Boland et al. (1992) proved that

U1 Pst U2 () X1 6st X2;

where Pst denotes the usual stochastic order and the formal defini-
tions of various stochastic orders used in this paper will be given in
Section 2. Singh and Misra (1994) showed if X1, X2 and X have expo-
nential distributions with parameters k1, k2 and k, then

k1 P maxfk2; kg ) U1 Phr U2; ð1:1Þ

where Phr denotes the hazard rate order. For the standby redun-
dancy case, Boland et al. (1992) showed that

X1 6hr X2 )W1 Pst W2: ð1:2Þ
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Shaked and Shanthikumar (1992) first considered the problem
of allocating K redundancies to a series system wherein the original
components and redundancies have independent and identically
distributed lifetimes. Let K = (k1, . . . , kn) be an allocation vector
with

Pn
i¼1ki ¼ K , i.e., ki redundant components are put in parallel

to the ith original component in the system. Let Ts(K) denote the
lifetime of the resulting series system. Shaked and Shanthikumar
(1992) then established that

TsðKÞPst TsðK0Þ whenever K0 �
m

K; ð1:3Þ

where �
m

denotes majorization order and the formal definitions on
majorization type orders will be provided in Section 2. Singh and
Singh (1997) further improved the result in (1.3) from the usual sto-
chastic order to the hazard rate order as

TsðKÞPhr TsðK0Þ whenever K0 �
m

K: ð1:4Þ

Hu and Wang (2009) and Misra et al. (2009) independently proved
that, for a series system with two nodes,

Tsðk1; k2ÞPrh Ts k01; k
0
2

� �
whenever k01; k

0
2

� �
�
m
ðk1; k2Þ: ð1:5Þ

Hu and Wang (2009) also used a counterexample to show that (1.5)
does not hold in general for the case when n > 2. However, they left
an open problem whether the result in (1.5) may be strengthened to
the likelihood ratio order.

The purposes of the present paper are twofold. The first purpose
is to extend the comparison result for the problem of allocating one
redundancy to the series system with two nodes under exponential
framework. Specifically, it is shown if X1, X2 and X have exponential
distributions with parameters k1, k2 and k, respectively, then

k1 P maxfk2; kg ) U1 Plr U2; ð1:6Þ

where Plr denotes the likelihood ratio order. Apparently, the result
in (1.6) strengthens the corresponding one in (1.1) from the hazard
rate order to the likelihood ratio order, and for the standby case, we
show that

k1 P k2 )W1 Plr W2:

These two results will be proved in Section 3.
Another problem we focus on is to allocate K active redundan-

cies to a series system which is treated in Section 4. For the case
when the series system has two nodes, it is shown that

Tsðk1; k2ÞPlr Ts k01; k
0
2

� �
whenever k01; k

0
2

� �
�
m
ðk1; k2Þ; ð1:7Þ

which actually solves an open problem suggested by Hu and Wang
(2009). In fact, we can reach a more general result than that in (1.7)

Tsðk1; k2ÞPlr Ts k01; k
0
2

� �
whenever k01; k

0
2

� �
�
w
ðk1; k2Þ:

We also establish that

Tsðk1; k2ÞPrh Ts k01; k
0
2

� �
whenever k01 þ 1; k02 þ 1

� �
�
p
ðk1 þ 1; k2 þ 1Þ;

which allows the reliability engineer to obtain more reliable result-
ing system even though he/she has less redundancies. For the n-
components series system, it is shown if K ¼ nk ¼

Pn
i¼1ki and

K0 = (k, . . . , k), then,

TsðK0ÞPlr TsðKÞ;

and if ðk� þ 1Þn ¼
Qn

i¼1ðki þ 1Þ and K⁄ = (k⁄, . . . , k⁄), then,

TsðK�ÞPrh TsðKÞ: ð1:8Þ

We also show by a counterexample that the reversed hazard rate
order in (1.8) cannot be replaced by the hazard rate order. Finally,
it is shown that

TsðKÞPst TsðK0Þ

whenever k01 þ 1; . . . ; k0nþ1

� �
�
p
ðk1 þ 1; . . . ; kn þ 1Þ:

A counterexample is provided to illustrate that the usual stochastic
order cannot be strengthened to the hazard rate order or the re-
versed hazard rate order.

2. Definitions and notations

In this section, we first recall some notions of stochastic orders,
and majorization and related orders. Throughout this paper, the
term increasing is used for monotone non-decreasing and decreasing
is used for monotone non-increasing.

2.1. Stochastic orders

Definition 2.1. For two random variables X and Y with densities fX

and fY, and distribution functions FX and FY, respectively, let
FX ¼ 1� FX and FY ¼ 1� FY be the corresponding survival func-
tions. Denote by hX ¼ fX=FX ½hY ¼ fY=FY � the hazard rate function of
X[Y], and rX = fX/FX[rY = fY/FY] the reversed hazard rate function of
X[Y]. Then:

(i) X is said to be smaller than Y in the likelihood ratio order
(denoted by X 6 lrY) if fY(x)/fX(x) is increasing in x.

(ii) X is said to be smaller than Y in the hazard rate order
(denoted by X 6 hrY) if FYðxÞ=FXðxÞ is increasing in x; or
equivalently, if hX(x) P hY(x).

(iii) X is said to be smaller than Y in the reversed hazard rate
order (denoted by X 6 rhY) if FY(x)/FX(x) is increasing in x;
or equivalently, if rX(x) 6 rY(x).

(iv) X is said to be smaller than Y in the usual stochastic order
(denoted by X 6 stY) if FYðxÞP FXðxÞ.

From Shaked and Shanthikumar (2007), the likelihood ratio or-
der implies both the hazard rate order and the reversed hazard rate
order which in turn imply the usual stochastic order, but neither
the hazard rate order nor the reversed hazard rate order implies
the other.

2.2. Majorization and related orders

The notion of majorization is quite useful in establishing vari-
ous inequalities. Let x(1) 6 x(2) 6 � � � 6 x(n) be the increasing
arrangement of the components of the vector x = (x1, . . . , xn).

Definition 2.2. The vector x is said to majorize the vector y,
written as x �

m
y, if

Xj

i¼1

xðiÞ 6
Xj

i¼1

yðiÞ for j ¼ 1; . . . ;n� 1;

and
Pn

i¼1xðiÞ ¼
Pn

i¼1yðiÞ.

The majorization relation x �
m

y means the components of x are
more equal than those of y (cf. Marshall and Olkin, 1979). In addi-
tion, the vector x is said to submajorize the vector y weakly, writ-
ten as x �

w
y, if

Xj

i¼1

xðiÞ 6
Xj

i¼1

yðiÞ for j ¼ 1; . . . ;n:
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