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a b s t r a c t

In this paper the usage of a stochastic optimization algorithm as a model search tool is proposed for the
Bayesian variable selection problem in generalized linear models. Combining aspects of three well known
stochastic optimization algorithms, namely, simulated annealing, genetic algorithm and tabu search, a
powerful model search algorithm is produced. After choosing suitable priors, the posterior model prob-
ability is used as a criterion function for the algorithm; in cases when it is not analytically tractable
Laplace approximation is used. The proposed algorithm is illustrated on normal linear and logistic regres-
sion models, for simulated and real-life examples, and it is shown that, with a very low computational
cost, it achieves improved performance when compared with popular MCMC algorithms, such as the
MCMC model composition, as well as with ‘‘vanilla’’ versions of simulated annealing, genetic algorithm
and tabu search.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Generalized linear models (GLMs) are widely used to model the
dependence of a response variable Y on a set of possible explana-
tory variables (or predictors) X1, . . . ,Xp. They assume that the
conditional distribution of Yj(X1, . . . ,Xp) belongs to the exponential
family with mean l related to the explanatory variables through
the linear predictor g = g(l) where g(�) is the link function. When
there is no uncertainty about the structural properties (such as
the response distribution, or the link function; for a link function
selection see for example Ntzoufras et al., 2003; Hahn, 2006) of
the GLM, the later can be fully described by a vector c =
(c1, . . . ,cp)T 2 {0,1}p, denoting which explanatory variables are
present in the linear predictor. The cj, j = 1, . . . ,p, takes the value
1 if explanatory variable j is included in the model and 0 otherwise.
The variable selection problem deals with the issue of choosing the
appropriate c, i.e. a parsimonious and reasonable subset of the
explanatory variables. When p is large, a computationally demand-
ing optimization problem arises, since the size of the model space
M¼ f0;1gp can be enormous.

The plan of the paper is as follows. In Section 2 a brief descrip-
tion of how the Bayesian community deals with variable selection
problems in GLMs is presented, in Section 3 three well know opti-
mization algorithms: the simulated annealing, the genetic algo-
rithm and the tabu search are re-visited and a new algorithm is
formed by combining ideas from those techniques. In Section 4
the proposed algorithm is illustrated with various examples and

Section 5 contains some final remarks. Finally, there is an Appendix
with the pseudocode of the proposed algorithm, together with
details concerning a data-set used for illustration.

2. Bayesian variable selection in generalized linear models

Letting y = (y1, . . . ,yn)T denote the available observations for the
response variable and Xij the value of the explanatory variable j
(j = 1, . . . ,p) for observation i (i = 1, . . . ,n). Let also X represent the
n � p data matrix with elements Xij. Within the Bayesian frame-
work the identification of the ‘‘best model’’ (identification of the
‘‘best set of explanatory variables’’ in our case) between the 2p

competitors, fc1; c2; � � � ; cjMjg, is equivalent (assuming a zero-one
loss function) to find the model with the highest posterior model
probability, defined as

f ðcjyÞ ¼ f ðyjcÞf ðcÞP
c‘2Mf ðyjc‘Þf ðc‘Þ

; ð1Þ

where c 2M; f ðyjcÞ is the marginal likelihood under model c and
f(c) is the prior model probability of model c. The marginal likeli-
hood function in the above calculation can be further expanded to
include the effect of the model parameters:

f ðyjcÞ ¼
Z

f ðyjhc; cÞf ðhcjcÞdhc; ð2Þ

where f(yjhc,c) is the likelihood under model c with parameters hc

and f (hcjc) is the prior distribution of model parameters given mod-
el c.
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Pairwise comparison of any two models, c‘0 and c‘ is given by
the posterior odds

POc‘0 ;c‘ �
f ðc‘0 jyÞ
f ðc‘jyÞ

¼ f ðyjc‘0 Þ
f ðyjc‘Þ

� f ðc‘0 Þ
f ðc‘Þ

: ð3Þ

Closed form expression of the marginal likelihood (2), and
therefore of the posterior model probability (1) is available only
in special cases, such as the normal linear regression with conju-
gate or semi-conjugate prior for the model parameters (e.g., Marin
and Robert, 2007). Therefore, a combination of Laplace approxima-
tions (e.g., Bernardo and Smith, 1994; Raftery, 1996) and Markov
Chain Monte Carlo (MCMC) methodology (e.g., Green, 1995; Han
and Carlin, 2001; Chipman et al., 2001; Dellaportas et al., 2002)
is usually used.

One important issue in Bayesian model evaluation using poster-
ior model probabilities is their sensitivity to the prior variance of
the model parameters: large prior variance of the hc (used to rep-
resent prior ignorance) will increase the posterior probabilities of
the simpler models considered in the model spaceM (e.g., Bartlett,
1957; Lindley, 1957). Therefore, specifying the prior distribution is
pivotal for the a-posteriori support of the models examined. Here a
family of prior distributions based on the Zellner’s g-prior (Zellner,
1986) is used after applying ideas proposed by Ntzoufras et al.
(2003). For the normal regression case, for any model c of dimen-
sion dc and parameters hc = (b0,bc,r2), a prior of the form

f ðbcjc;r2Þ ¼ N 0;nr2 XT
cXc

� ��1
� �

;

f ðb0;r2jcÞ / r�2

ð4Þ

is used (see for example Liang et al., 2008), where b0 is an intercept
that is common to all models, bc is the dc-dimensional vector of
nonzero regression coefficients included in the model specified by
c, r2 is the error variance of any model and Xc is the data matrix
corresponding to model c (i.e. the submatrix of X with columns cor-
responding to explanatory variables included in the model specified
by c). For the logistic regression case, for any model c with param-
eters hc = (b0,bc), the prior of the form

f ðhcjcÞ ¼ N 0;4n eXT
c
eXc

� ��1
� �

ð5Þ

is used, where eXc ¼ ðXih; i ¼ 1; . . . ; n; h ¼ 0; . . . ; pÞ is the design
matrix corresponding to model c, with Xi0 = 1 for all i = 1, . . . , n.

Regarding the prior on model space, following the work by Ley
and Steel (2009) a beta-binomial hierarchical prior is used. For any
model c 2 M, this prior has the following form

dc �
Xp

j¼1

cj � Binðp;pÞ;

p � Betaða;bÞ:
ð6Þ

The above prior depends on two hyperparameters, (a,b). For fixed
a = 1 the above prior could be elicited in terms of the prior mean
model size, m. The choice of m will then determine b through the
formula b = (p �m)/m. By setting m = p/2 will get b = 1 and there-
fore a discrete uniform prior for model size is obtained. It is easy
to show that the prior probability for any model c‘ of size k, using
the prior (6), with a = 1, is given by:

f ðc‘Þ ¼
C 1þ p�m

m

� �
C p�m

m

� � Cð1þ kÞC p�m
m þ p� k

� �
C 1þ p�m

m þ p
� � : ð7Þ

2.1. Model search algorithms

The number of models under consideration is equal to 2p and
therefore when p is even moderately large, this number grows

tremendously. As a result, visiting every possible competing model
becomes infeasible. This motivates the need for global optimiza-
tion methods, for example stochastic optimization techniques such
as simulated annealing (Kirkpatrick et al., 1983), genetic algo-
rithms (e.g., Holland, 1975), and tabu search (e.g., Glover, 1989).
Alternatively, popular MCMC methods can be used, such as Markov
chain Monte Carlo model composition (MC3; Madigan and York,
1995), or RJMCMC (Green, 1995), as model search algorithms, to
trace the most important models. RJMCMC is a quite general ap-
proach that can be used when the model parameters can not be
integrated out and is also effective when Laplace approximation
does not work well. When using MCMC methods, posterior model
probabilities and posterior model odds can be directly estimated
from their output, but with a realistically large number of explan-
atory variables, those estimates can be poor in a reasonable
amount of CPU time.

The above mentioned MCMC techniques may suffer from poor
mixing in high dimensional spaces, and as a result they may be
unable to explore the full support of the posterior distribution.
To avoid this problem, stochastic optimization algorithms have
been used for variable selection problems in order to form more
powerful MCMC algorithms. Liang and Wong (2000) have pro-
posed a new MCMC algorithm, called an evolutionary Monte Carlo
algorithm, that has incorporated several attractive features of
genetic algorithms and simulated annealing into the framework
of MCMC. Liang et al. (2001) have used evolutionary Monte Carlo
to sample from the posterior distributions for a multiple linear
regression setup. They have shown that sampling from the poster-
ior distribution is approximately equivalent to sampling from a
Boltzmann distribution defined on Cp values. Furthermore, Bottolo
and Richardson (2010) have proposed a new sampling algorithm
based upon evolutionary Monte Carlo that is designed to work un-
der the ‘‘large p, small n’’ paradigm. Finally, Clyde et al. (2011) have
considered sampling the model space without replacement and
this in some sense implements a similar idea to tabu search by set-
ting all previously visited models ‘‘tabu’’.

Furthermore, stochastic optimization algorithms have been
used as model search tools in order to find ‘‘good’’ models. Unler
and Murat (2010) have used a discrete particle swarm optimiza-
tion method for feature selection in binary classification problems
and Piramuthu (2004) has evaluated several inter-class as well as
probabilistic distance-based feature selection methods as to their
effectiveness in preprocessing input data for inducing decision
trees. Chatterjee et al. (1996) have used the genetic algorithm for
solving various discrete optimization problems in statistical mod-
eling, while Tolvi (2004) has used genetic algorithm for outlier
detection and variable selection in linear regression models. Mills
et al. (2005) and Pacheco et al. (2009) have performed variable
selection based on tabu search, while Meiri and Zahavi (2006) have
used simulated annealing to optimize the variable selection prob-
lem in marketing applications. Pacheco et al. (2006) have com-
pared a series of techniques based on metaheuristic strategies,
among them a genetic local search method and a tabu search, on
a variable selection problem with stepwise methods. Brusco and
Steinley (2011) have used tabu search for variable selection in lin-
ear discriminant analysis. Finally, Cadima et al. (2004) have solved
the combinatorial optimization problem of variable selection for
three different objective functions with simulated annealing,
genetic algorithm and a restricted local search.

Within the Bayesian variable selection literature, Soyer and
Tanyeri (2006) have presented a simulation-based method for a
Bayesian portfolio selection problem, Brooks et al. (2003) have per-
formed model selection via simulated annealing, while Fearn et al.
(2002), Draper and Fouskakis (2000) and Fouskakis and Draper
(2008) have used stochastic optimization methods for a Bayesian
decision theory approach to variable selection. Finally, Kapetanios
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