New exact solutions of coupled generalized regularized long wave equations

K.R. Raslan ${ }^{\text {a }}$, Talaat S. EL-Danaf ${ }^{\text {b }}$, Khalid K. Ali ${ }^{\text {a,* }}$
${ }^{a}$ Mathematics Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt
${ }^{\mathrm{b}}$ Mathematics Department, Faculty of Science, Menoufia University, Shebein El-Koom, Egypt

A R TICLE I N F O

Article history:

Received 19 October 2016
Revised 26 March 2017
Accepted 13 June 2017
Available online xxx

Keywords:

Sine-cosine functions method
The Kudryashov method
Coupled GRLWE

Abstract

In the present paper, we established a traveling wave solution by using sine-cosine functions algorithm and the Kudryashov Method for nonlinear partial differential equations. Different methods are used to obtain the exact solutions for different types of nonlinear partial differential equations such as, coupled generalized regularized long wave equation (CGRLW). We plot the exact solutions for these equations at different time levels.

© 2017 Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Exact soliton solutions for nonlinear partial differential equations (NPDEs) play an important role in many phenomena in physics such as fluid mechanics, hydrodynamics, optics, condensed matter physics, plasma physics, and so on. The achievements and the research direction in the research area are the construction of the exact soliton solutions of these nonlinear PDEs using many mathematical methods. Now, with the help of computerized symbolic computations and with progress also in the science of numerical analysis many researchers found many methods to solve nonlinear partial differential equations, which were difficult to resolve in the past, such as finite difference method [1,2]. Also, there exist some mathematical models that describe some of the complex phenomena in physics, chemistry and other various scientific fields had to be and there are many methods to solve these models and get the exact results of these models non-linear waves' equations, which plays an important role in the study of many phenomena physical. There are many numerical methods that were used in solving such phenomena such as finite element methods [36], Hirota's method [7], extended tanh-function method [8], sinecosine method [9], Variational iterative method [10] and so on. The coupled equal width wave equation given by Ali et al. [11] solved by EL-Sayed et al. using classical method [12]. In this paper, we will apply the sine-cosine function algorithms and the Kudryashov method to find the new exact solutions of some important nonlin-

[^0]ear partial differential equations. To illuminate the utility of these methods, we will apply them to the coupled generalized regularized long wave (CGRLW) equations.

The rest of this paper is organized as follows: In Section 2, we describe the sine-cosine function algorithms. In Section 3, we apply the proposed sine-cosine function algorithms to establish the exact solutions for the coupled generalized regularized long wave equations. In Section 4, we apply the proposed Kudryashov method to establish the exact solutions for CGRLW equations. Conclusions are presented in Section 5.

2. The sine-cosine functions method

Consider the system of nonlinear partial differential equations in the form
$H\left(w, w_{t}, w_{x}, w_{x x}, w_{x x t}, g, g_{t}, g_{x}, g_{x x}, g_{x x t}, \ldots\right)=0$,
where $w(x, t)$ and $g(x, t)$ are solutions for the system of nonlinear partial differential equations (1). We use the transformations,
$w(x, t)=h(\zeta)$,
$g(x, t)=l(\zeta)$,
where $\zeta=x-s t$ and s represent the constant velocity of a wave traveling in the positive direction of x-axis. Then, from Eqs. (2), we get

$$
\begin{align*}
w_{t} & =-s h^{\prime}(\zeta), \quad w_{x}=h^{\prime}(\zeta), \quad w_{x x}=h^{\prime \prime}(\zeta), \quad w_{x x t}=-s h^{\prime \prime \prime}(\zeta), \ldots \\
g_{t} & =-s l^{\prime}(\zeta), \quad g_{x}=l^{\prime}(\zeta), \quad g_{x x}=l^{\prime \prime}(\zeta), \quad g_{x x t}=-s l^{\prime \prime \prime}(\zeta), \ldots \tag{3}
\end{align*}
$$

Use Eqs. (3) to transfer the system of nonlinear partial differential equations (1) to nonlinear ordinary differential equations
$G\left(h^{\prime}, h^{\prime \prime}, h^{\prime \prime \prime}, l^{\prime}, l^{\prime \prime}, l^{\prime \prime \prime}, \ldots\right)=0$,
In the Sine-Cosine technique, the solutions of (4) may be expressed in the form

$$
\begin{align*}
& h(\zeta)=a \sin ^{m}\left(\eta_{1} \zeta\right) \\
& l(\zeta)=b \sin ^{n}\left(\eta_{2} \zeta\right) \tag{5}
\end{align*}
$$

$$
h(\zeta)=a \cos ^{m}\left(\eta_{1} \zeta\right)
$$

$$
\begin{equation*}
l(\zeta)=b \cos ^{n}\left(\eta_{2} \zeta\right) \tag{6}
\end{equation*}
$$

where $a, \eta_{1}, \eta_{2}, b, n$ and m are parameters to be determined. From Eqs. (5), we get the following derivatives with respect to ζ :

$$
\begin{align*}
& h(\xi)=a \sin ^{m}\left(\eta_{1} \zeta\right), \\
& h^{\prime}(\xi)=m a \eta_{1} \sin ^{m-1}\left(\eta_{1} \zeta\right) \cos \left(\eta_{1} \zeta\right), \\
& h^{\prime \prime}(\xi)=-m^{2} a \eta_{1}^{2} \sin ^{m}\left(\eta_{1} \zeta\right)+m(m-1) a \eta_{1}^{2} \sin ^{m-2}\left(\eta_{1} \zeta\right), \\
& l(\xi)=b \sin ^{n}\left(\eta_{2} \zeta\right), \\
& l^{\prime}(\xi)=n b \eta_{2} \sin ^{n-1}\left(\eta_{2} \zeta\right) \cos \left(\eta_{2} \zeta\right), \\
& l^{\prime \prime}(\xi)=-n^{2} b \eta_{2}^{2} \sin ^{n}\left(\eta_{2} \zeta\right)+n(n-1) b \eta_{2}^{2} \sin ^{n-2}\left(\eta_{2} \zeta\right) . \tag{7}
\end{align*}
$$

Similarly, from Eqs. (6), we get

$$
\begin{align*}
& h(\xi)=a \cos ^{m}\left(\eta_{1} \zeta\right), \\
& h^{\prime}(\xi)=-m a \eta_{1} \cos ^{m-1}\left(\eta_{1} \zeta\right) \sin \left(\eta_{1} \zeta\right), \\
& h^{\prime \prime}(\xi)=-m^{2} a \eta_{1}^{2} \cos ^{m}\left(\eta_{1} \zeta\right)+m(m-1) a \eta_{1}^{2} \cos ^{m-2}\left(\eta_{1} \zeta\right), \\
& l(\xi)=b \cos ^{n}\left(\eta_{2} \zeta\right), \\
& l^{\prime}(\xi)=-n b \eta_{2} \cos ^{n-1}\left(\eta_{2} \zeta\right) \sin \left(\eta_{2} \zeta\right), \\
& l^{\prime \prime}(\xi)=-n^{2} b \eta_{2}^{2} \cos ^{n}\left(\eta_{2} \zeta\right)+n(n-1) b \eta_{2}^{2} \cos ^{n-2}\left(\eta_{2} \zeta\right) . \tag{8}
\end{align*}
$$

Substituting (8) into the system of nonlinear ordinary differential equations (4) gives a trigonometric equation of $\cos ^{m}\left(\eta_{1} \zeta\right)$ and $\cos ^{n}\left(\eta_{2} \zeta\right)$ terms. To determine the parameters we need make balancing between m and n powers in (8). Then we collect all terms with the same power in $\cos ^{m}\left(\eta_{1} \zeta\right), \cos ^{n}\left(\eta_{2} \zeta\right)$ and put to zero their coefficients to get a system of algebraic equations in the unknowns $a, \eta_{1}, \eta_{2}, b, n$ and m. Similarly, substituting (7) into the system of nonlinear ordinary differential equation (4) gives a trigonometric equation of $\sin ^{m}\left(\eta_{1} \zeta\right)$ and $\sin ^{n}\left(\eta_{2} \zeta\right)$ terms. We can obtain the unknown parameters $a, \eta_{1}, \eta_{2}, b, n$ and m by the same way. Hence, the solutions considered in (5) and (6) are obtained.

3. Applications

3.1. Test problem

The coupled generalized regularized long wave equations (CGRLWE) consider the following problem: Find functions $w(x, t)$ and $g(x, t)$ satisfying CGRLWE in the form [12],

$$
\begin{align*}
& w_{t}+w_{x}+\varepsilon w^{p} w_{x}-\mu w_{x x t}+\varepsilon g^{p} g_{x}=0 \tag{9}\\
& g_{t}+g_{x}+\varepsilon g^{p} g_{x}-\mu g_{x x t}=0
\end{align*}
$$

where p is a positive integer.
Using (2) and (3) into (9) gives the following system of ordinary differential equations

$$
\begin{align*}
& (1-s) h^{\prime}+\varepsilon h^{p} h^{\prime}+\mu s h^{\prime \prime \prime}+\varepsilon l^{p} l^{\prime}=0, \\
& (1-s) l^{\prime}+\varepsilon l^{p} l^{\prime}+\mu s l^{\prime \prime \prime}=0 \tag{10}
\end{align*}
$$

Integrating (10) once and taking the constant of integration to be zero, we find

$$
\begin{align*}
& (1-s) h+\varepsilon \frac{1}{p+1} h^{p+1}+\mu s h^{\prime \prime}+\varepsilon \frac{1}{p+1} l^{p+1}=0 \tag{11}\\
& (1-s) l+\varepsilon \frac{1}{p+1} l^{p+1}+\mu s l^{\prime \prime}=0
\end{align*}
$$

Substituting Eq. (8) into (10) gives:

$$
\begin{aligned}
& (1-s) a \cos ^{m}\left(\eta_{1} \zeta\right)+\frac{\varepsilon}{(p+1)} a^{(p+1)} \cos ^{(p+1) m}\left(\eta_{1} \zeta\right) \\
& \quad-s \mu m^{2} a \eta_{1}^{2} \cos ^{m}\left(\eta_{1} \zeta\right)+s \mu m(m-1) a \eta_{1}^{2} \cos ^{m-2}\left(\eta_{1} \zeta\right) \\
& \quad+\frac{\varepsilon}{(p+1)} b^{(p+1)} \cos ^{(p+1) n}\left(\eta_{2} \zeta\right)=0 \\
& (1-s) b \cos ^{n}\left(\eta_{2} \zeta\right)+\frac{\varepsilon}{(p+1)} b^{(p+1)} \cos ^{(p+1) n}\left(\eta_{2} \zeta\right) \\
& \quad+s \mu n^{2} b \eta_{2}^{2} \cos ^{n}\left(\eta_{2} \zeta\right)+s \mu n(n-1) b \eta_{2}^{2} \cos ^{n-2}\left(\eta_{2} \zeta\right)=0
\end{aligned}
$$

(12)

The last system is satisfied only if the following system of algebraic equations holds:

$$
\begin{align*}
& m-1 \neq 0 \\
& m-2=(p+1) m=(p+1) n \\
& \frac{\varepsilon}{(p+1)} a^{p+1}+\frac{\varepsilon}{(p+1)} b^{p+1}=-s \mu m(m-1) a \eta_{1}^{2} \\
& (1-s) a=s \mu m^{2} a \eta_{1}^{2} \\
& n-1 \neq 0 \\
& n-2=(p+1) n \\
& \frac{\varepsilon}{(p+1)} b^{p+1}=-\operatorname{s\mu n}(n-1) b \eta_{2}^{2}, \\
& (1-s) b=s \mu n^{2} b \eta_{2}^{2} \tag{13}
\end{align*}
$$

We can get the same system (12) by substituting Eq. (7) into (10). To solve this system, we must take concrete values for p. In what follows we take $p=1,2,3$.

Now we study these cases case by case.
3.1.1. Case one (the exact solution of CRLWE at $p=1$)

Using MATHEMATICA package software for solving the system (12) at $p=1$ we obtain:

$$
\begin{align*}
& m=n=-2, \quad \eta_{1}=\eta_{2}= \pm \frac{1}{2} \sqrt{\frac{1-s}{\mu s}} \\
& b=\frac{3(s-1)}{\varepsilon}, \quad a_{1}=\frac{3(s-1)}{2 \varepsilon}(1-i \sqrt{3}), \\
& a_{2}=\frac{3(s-1)}{2 \varepsilon}(1+i \sqrt{3}) \tag{14}
\end{align*}
$$

By back substitution (13) into (5) and (6) with (2) and setting $s=s+1, s>0$, we obtain the exact solution of the CRLWE in the form

$$
\begin{aligned}
& g(x, t)=\frac{3 s}{\varepsilon} \sec h^{2}\left(\frac{1}{2} \sqrt{\frac{s}{\mu(s+1)}}(x-(s+1) t)\right), \\
& g(x, t)=-\frac{3 s}{\varepsilon} \csc ^{2}\left(\frac{1}{2} \sqrt{\frac{s}{\mu(s+1)}}(x-(s+1) t)\right), \\
& w_{1}(x, t)=\frac{3 s}{2 \varepsilon}(1-i \sqrt{3}) \sec h^{2}\left(\frac{1}{2} \sqrt{\frac{s}{\mu(s+1)}}(x-(s+1) t)\right), \\
& w_{1}(x, t)=-\frac{3 s}{2 \varepsilon}(1-i \sqrt{3}) \csc ^{2}\left(\frac{1}{2} \sqrt{\frac{s}{\mu(s+1)}}(x-(s+1) t)\right), \\
& w_{2}(x, t)=\frac{3 s}{2 \varepsilon}(1+i \sqrt{3}) \sec h^{2}\left(\frac{1}{2} \sqrt{\frac{s}{\mu(s+1)}}(x-(s+1) t)\right), \\
& w_{2}(x, t)=-\frac{3 s}{2 \varepsilon}(1+i \sqrt{3}) \csc ^{2}\left(\frac{1}{2} \sqrt{\frac{s}{\mu(s+1)}}(x-(s+1) t)\right) .
\end{aligned}
$$

Now we can plot these solutions at different time levels and we can show the motion of solitary waves on Fig. 1.

https://daneshyari.com/en/article/6898939

Download Persian Version:
https://daneshyari.com/article/6898939

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: khalidkaram2012@yahoo.com (K.K. Ali).

