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a b s t r a c t 

Higher order system of boundary value problems arise in several areas of applications. In this paper, we 

employ the Chebyshev wavelet finite difference method to solve such system of higher order boundary 

value problems. Numerical experiments are conducted to show the feasibility of the proposed method. 
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1. Introduction 

Mathematical models of certain problems and phenomena in 

science and engineering require the solution of system of higher 

order ( ≥ 2) boundary value problems (BVPs) involving ordinary 

differential equations (ODEs). Several new approximate analytical 

and numerical methods have been developed and applied for vari- 

ous types of problems involving differential equations. Solving sys- 

tem of boundary value problems involving ODEs using new meth- 

ods has attracted the attention of many researchers. Islam et al. 

[1] proposed a non polynomial spline approach for the approxi- 

mate solution of a system of third-order boundary-value problems. 

Momani [2] employed a modified decomposition method for 

solving a system of second order obstacle problems. The sinc- 

collocation method, non-polynomial spline method and variational 

iteration method were, respectively used in [3–6] . He’s homotopy 

perturbation [7] and B-spline method [8] have also been employed 

to solve a system of BVPs. Noor et al. [9,10] proposed variational 

method and the modified variation of parameters method which 

is a combination of variation of parameters method and Adomian’s 

decomposition method for solving system of second-order and 

third-order nonlinear boundary value problem. In 2014, Arqub 
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et al. [11] and Chen et al. [12] applied continuous genetic algo- 

rithm and deficient discrete cubic spline methods to obtain the 

solution to a system of second order boundary value problems. 

Kazemi Nasab et al. [13,14] solved singular boundary value prob- 

lems of different types using wavelet analysis method. A composite 

Chebyshev finite difference method was used for solving singular 

boundary value problems in [15] . Scalar boundary value problems 

have been solved by Kazemi Nasab et al. [16,17] using the CWFD 

method. The operational matrix of fractional integration for shifted 

Chebyshev polynomials was derived in [18] . Bhrawy et al. [19] pro- 

posed a new formula for fractional integral of Chebyshev poly- 

nomials. Shifted fractional-order Jacobi orthogonal functions was 

employed for solving a system of fractional differential equations 

[20] . Chen et al. [21] applied Legendre wavelets to solve system of 

nonlinear fractional differential equations. Shifted Jacobi spectral 

approximations was used for solving fractional differential equa- 

tions [22] . The question we wish to pursue in this paper is whether 

CWFD method can be extended for nonlinear higher order systems. 

In this paper, we employ CWFD of numerical solution of a 

system of higher order BVPs of the form: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

f 1 (x, u (x ) , u 

(1) (x ) , · · · , u 

(ω−1) (x ) , u 

(ω) (x )) = 0 , 

f 2 (x, u (x ) , u 

(1) (x ) , · · · , u 

(ω−1) (x ) , u 

(ω) (x )) = 0 , 

. . . 

f r (x, u (x ) , u 

(1) (x ) , · · · , u 

(ω−1) (x ) , u 

(ω) (x )) = 0 , 

(1.1) 
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subject to the conditions 

B i (u q (0) , · · · , u 

(ω−1) 
q (0) , u q (1) , · · · , u 

(ω−1) 
q (1)) , 

q = 1 , 2 , . . . , r, i = 1 , 2 , . . . , rω, 

where u 

(α) (x ) = [ u (α) 
1 

(x ) , u (α) 
2 

(x ) , · · · , u (α) 
r (x )] , α = 0 , 1 , 2 , . . . , ω

and f j are nonlinear functions of u j , u 
′ 
j 
, . . . , and u (ω−1) 

j 
, 

j = 1 , 2 , . . . , r. 

2. Wavelets and Chebyshev wavelets 

The attractive properties of wavelets in certain situations have 

persuaded many researchers to consider them as a mathematical 

tool to solve different kinds of problems arising in mathematics, 

physics, and engineering. Wavelet analysis can overcome certain 

shortcomings of Fourier analysis whilst retaining the advantages. 

The multiresolution analysis aspect of wavelets allows to decom- 

position of a function or signal into elementary waveforms at 

different positions and scales to detect important information such 

as peaks or singularities. 

Hence wavelets can be an important tool in the solution of 

problems involving peaks or singularities. Varying the dilation 

parameter a and the translation parameter b give rise to the 

following family of continuous wavelets [23] : 

ψ a,b (x ) = | a | −1 
2 ψ 

(
x − b 

a 

)
, a, b ∈ R, a � = 0 . (2.1) 

Chebyshev wavelets ψ n,m 

= ψ(k, n, m, x ) , have five arguments, 

n = 1 , . . . , 2 k −1 , m is degree of Chebyshev polynomials of the first 

kind, x denotes the time and are defined on [0, 1) as, 

ψ n,m 

(x ) = 

{
2 

k 
2 p m 

T m 

(2 

k x − 2 n + 1) , n −1 
2 k −1 ≤ x < 

n 
2 k −1 , 

0 , otherwise , 
(2.2) 

where p m 

, m = 0 , 1 , . . . , M are defined as, 

p m 

= 

{
1 √ 

π
, m = 0 , √ 

2 
π , m ≥ 1 , 

(2.3) 

and T m 

are Chebyshev polynomials of the first kind of degree m 

defined as, 

T m 

(x ) = cos mβ, β = arc cos x, (2.4) 

which are orthogonal with respect to the weight function 

w (x ) = 1 / 
√ 

1 − x 2 . 

A function f ∈ L 2 [0, 1) may be approximated as 

f (x ) ≈
2 k −1 ∑ 

n =1 

M ∑ 

m =0 

c n,m 

ψ n,m 

(x ) = C T �(x ) , (2.5) 

where C and �( x ) are 2 k (M + 1) × 1 matrices given by 

C = [ c 1 , 0 , . . . , c 1 ,M 

, c 2 , 0 , . . . , c 2 ,M 

, . . . , c 2 k −1 , 1 , . . . , c 2 k −1 ,M 

] T , 

�(x ) = [ ψ 1 , 0 , . . . , ψ 1 ,M 

, ψ 2 , 0 , . . . , ψ 2 ,M 

, . . . , ψ 2 k −1 , 1 , . . . , ψ 2 k −1 ,M 

] T . (2.6) 

There are a variety of orthogonal basis functions but some of them 

have received considerable attention including piecewise constant 

basis functions, polynomials, and sincosine functions in Fourier 

series. Chebyshev polynomials are employed to minimize approx- 

imation error [24] . Chebyshev wavelets have good characteristics 

of both Chebyshev polynomials and wavelets. They are very well 

localized functions so can effectively approximate functions. The 

multiresolution property of wavelets enables us to adjust the 

parameters M and k in a proper way to improve the accuracy of 

solution. Another advantage of Chebyshev wavelets is to convert 

a given problem to a set of algebraic equations which can be 

solved easier. With the benefit of sparsity of coefficient matrix, 

computation performs faster. 

3. Chebyshev wavelet finite difference method 

A function f can be approximated in terms of a basis of 

Chebyshev polynomials as follows [25] , 

(P M 

f )(x ) = 

M ∑ ′′ 

m =0 

f m 

T m 

(x ) , (3.1) 

f m 

= 

2 

M 

M ∑ ′′ 

k =0 

f (x k ) T m 

(x k ) = 

2 

M 

M ∑ ′′ 

k =0 

f (x k ) cos 

(
mkπ

M 

)
, 

where the summation symbol with double primes denotes a sum 

with both the first and last terms halved. Moreover, the well 

known Chebyshev-Gauss-Lobatto interpolated points x m 

are the 

extrema of the M th-order Chebyshev polynomial T M 

( x ) and defined 

as 

x m 

= cos 

(
mπ

M 

)
, m = 0 , 1 , 2 , . . . , M. (3.2) 

The first three derivatives of the function f ( x ) at the points 

x m 

, m = 0 , 1 , . . . , M are given by Elbarbary et al. [26] –[27] as 

f (n ) (x m 

) = 

M ∑ 

j=0 

d (n ) 
m, j 

f (x j ) , n = 1 , 2 , 3 (3.3) 

where 

d (1) 
m, j 

= 

4 γ j 

M 

M ∑ 

k =1 

k −1 ∑ 

l=0 
(k + l) odd 

kγk 

c l 
T k (x j ) T l (x m 

) , 

= 

4 γ j 

M 

M ∑ 

k =1 

k −1 ∑ 

l=0 
(k + l) odd 

kγk 

c l 
cos 

(
k jπ

M 

)
cos 

(
lmπ

M 

)
, (3.4) 

d (2) 
m, j 

= 

2 γ j 

M 

M ∑ 

k =2 

k −2 ∑ 

l=0 
(k + l) e v en 

k (k 2 − l 2 ) γk 

c l 
T k (x j ) T l (x m 

) , 

= 

2 γ j 

M 

M ∑ 

k =2 

k −2 ∑ 

l=0 
(k + l) e v en 

k (k 2 − l 2 ) γk 

c l 
cos 

(
k jπ

M 

)
cos 

(
lmπ

M 

)
, (3.5) 

with γ0 = γM 

= 

1 
2 
, γ j = 1 for j = 1 , 2 , . . . M − 1 , and 

d (3) 
m, j 

= 

4 γ j 

M 

M ∑ 

k =2 

k −2 ∑ 

l=1 
(k + l) e v en 

l−1 ∑ 

r=0 
(l+ r) odd 

kl (k 2 − l 2 ) γk 

c l c r 
T k (x j ) T r (x m 

) , 

= 

4 γ j 

M 

M ∑ 

k =2 

k −2 ∑ 

l=1 
(k + l) e v en 

l−1 ∑ 

r=0 
(l+ r) odd 

kl (k 2 − l 2 ) γk 

c l c r 
cos ( 

k jπ

M 

) cos ( 
rmπ

M 

) . (3.6) 

We are now ready to set up the main idea of this work. Con- 

sider x nm 

, n = 1 , 2 , . . . , 2 k −1 , m = 0 , 1 , . . . , M, as the corresponding 

Chebyshev-Gauss-Lobatto collocation points at the nth subinterval [
n −1 
2 k −1 , 

n 
2 k −1 

)
such that, 

x nm 

= 

1 

2 k 
(x m 

+ 2 n − 1) . (3.7) 

On the other hand, a function f ( x ) can be written in terms of 

Chebyshev wavelet basis functions as follows 

(P M 

f )(x ) ≈
2 k −1 ∑ 

n =1 

M ∑ ′′ 

m =0 

c nm 

ψ nm 

(x ) , (3.8) 

where c nm 

, n = 1 , 2 , . . . , 2 k −1 , m = 0 , 1 , . . . , M, are the expansion 

coefficients of the function f ( x ) at the subinterval 
[

n −1 
2 k −1 , 

n 
2 k −1 

)
and 
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