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Y1 = @Yn + byn ¢ +yuy +

The main objective of this paper is to study the global stability of the positive solutions and the periodic
character of the difference equation

dyn—k + €Yn—s
aYn_k + ﬂle—s ’

MSC: with positive parameters and non-negative initial conditions. Numerical examples to the difference equa-
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tion are given to explain our results.
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1. Introduction

Difference equations, although their forms look very simple, it
is extremely difficult to understand thoroughly the periodic char-
acter, the boundedness character and the global behaviors of their
solutions. The study of non-linear rational difference equations of
higher order is of paramount importance, since we still know so
little about such equations. It is worthwhile to point out that al-
though several approaches have been developed for finding the
global character of difference equations, relatively a large number
of difference equations has not been thoroughly understood yet [1-
21].

In recent years non-linear difference equations have attracted
the interest of many researchers, for example:

Kalabusic et al. [12] investigated the periodic nature, the bound-
edness character, and the global asymptotic stability of solutions of
the difference equation

Xn_
nlop=01,...,

Xn41 = Pn + s
Xn-2

where the sequence p;, is periodic with period k, = {2, 3} with
positive terms and the initial conditions are positive.
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Raafat [15] studied the global attractivity, periodic nature, oscil-
lation and the boundedness of all admissible solutions of the dif-
ference equations

A— Bx,_q
+C + Dx;,_» ’
where A, B are non-negative real numbers, C, D are positive real
numbers +C + Dx;,,_ # 0 and for all n > 0.

Alaa [16] investigated the global stability, the permanence, and
the oscillation character of the recursive sequence

Xn—1

Xnjg =@ +=—,
n

n=0,1, ...,

Xn41 =

n=0,1, ...,

where « is a negative number and the initial conditions x_; and
Xo are negative numbers.

Obaid et al. [17] investigated the global stability character,
boundedness and the periodicity of solutions of the recursive se-
quence

bxn_1 + cxn_p + dxn_3
Xp_1+ BXn_2 + VX3~
where the parameters a, b, ¢, d, @, B and y are positive real num-
bers and the initial conditions x_3,x_5,X_1 and xg are positive real
numbers.

In [18] Zayed studied the global stability and the asymp-
totic properties of the non-negative solutions of the non-linear

Xn41 = 0Xp +
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difference equation

Xn + X
Xoot = Axn 4 Bxy + Pt Xk 01,

q+Xn
where the parameters A, B, p, ¢ and the initial conditions
X_g,...,X_1,Xo are arbitrary positive real numbers, while k is a

positive integer number.
El-Moneam [19] got the periodicity, the boundedness and the
global stability of the positive solutions of the non-linear difference

equation

bx K
Xni1 = AXn + Bxy_j +CXp_j + Dxp_g + —— |
n+1 n n—k n—I n—-o an,k—EXn,l

n=0,1,...,

where the coefficients A, B, C, D, b, d, e € (0, oo0), while
k, | and o are positive integers. The initial conditions
X_oy ooy Xy - ., X_1, X are arbitrary positive real
numbers such that k < [ < o.

Our aim in this paper is to study some qualitative behavior of
the positive solutions of the difference equation

QYn i+ €Yns
Yn_i+ BYn-s’
where the initial conditions x_g, x_s.,¢ ..., X_q and x, are positive

real numbers where § = max{t, [, k, s} and the coefficients q, b, c,
d, e, @ and B are positive real numbers.

X ks e

Yns1 = @QYn +byn_t + cyn + n=0,1,..., (1)

2. Some basic definition

Let I be some interval of real numbers and let
F:P+ >,

be a continuously differentiable function. Then for every set of ini-
tial conditions x_g,X_s,1....,Xo €I, the difference equation

yn+1=F(YnaYn—1a~~-7Yn78), n:0v17"‘1 (2)
has a unique solution {yn}>° .

Definition 1 (Equilibrium Point). A point ¥ € I is called an equilib-
rium point of the difference Eq. (2) if

y=F®.y,....¥).

That is, y, =y for n > 0,is a solution of the difference Eq. (2), or
equivalently, y is a fixed point of F.

Definition 2 (Stability). Let y € (0, co) be an equilibrium point of
the difference Eq. (2). Then, we have

(i) The equilibrium point y of the difference Eq. (2) is called lo-
cally stable if for every € > 0, there exists § > 0 such that

forall y_g,...,y_1,y0 € I with

Vs =Y+ ..+ 1y =Y+ yo-¥l <6,
we have

lyn—y| <€ forall n>-46.

(ii) The equilibrium point y of the difference Eq. (2) is called lo-
cally asymptotically stable if yis locally stable solution of
Eq. (2) and there exists y > 0, such that for ally_g, ..., y_1,
Yo € I with

Vs =Y+ 4+ y1 =Y+ o =¥l <V,
we have
lim y, =Y.
n—oo
(iii) The equilibrium point y of the difference Eq. (2) is called
global attractor if for all y_g, ..., y_1, yo € I, we have

lim y, =Y.

n—oo

(iv) The equilibrium point y of the difference Eq. (2) is called
globally asymptotically stable if y is locally stable, and y is
also a global attractor of the difference Eq. (2).

(v) The equilibrium point y of the difference Eq. (2) is called un-
stable if ¥ is not locally stable.

Definition 3 (Periodicity). A sequence {yn}>°  is said to be peri-
odic with period p if xnyp = Xn for all n > —4. A sequence {yn}>®
is said to be periodic with prime period p if p is the smallest pos-
itive integer having this property.

Definition 4. Eq. (2) is called permanent and bounded if there ex-
ists numbers m and M with 0 < m < M < oo such that for any
initial conditions y_g, ..., y_1, Yo € (0, oo) there exists a positive
integer N which depends on these initial conditions such that

m<y, <M foralln>N.

Definition 5. The linearized equation of the difference
Eq. (2) about the equilibrium yis the linear difference equa-
tion
$ _ _
oFy. vy, ...,
$ra =Y 0.y ¥

ayn_i Xn—i~ (3)

i=0

Now, assume that the characteristic equation associated with
(3) is

P(A) = por? + p1A®! + L+ ps_1A+ps =0, (4)
where

)

e ayn—i '

Theorem 1 [3]. Assume that p;eR, i=1,2,..., 8 and$ is non-
negative integer. Then

)
dpil <1,
i=1
is a sufficient condition for the asymptotic stability of the difference
equation
Xnis + P1Xnys 1 +...+DsXxn=0, n=0,1,....

Theorem 2 [4]. Let g: [n, £]**' — [n, €], be a continuous function,
where § is a positive integer, and where [n, &] is an interval of real
numbers. Consider the difference equation

Yor1 =&Wn. Yn1. -2 Yng),  n=0.1,... (5)

Suppose that g satisfies the following conditions.

(1) For each integer i with 1<i<d§+1; the function
g2(z1,29, ..., Zs,1) is weakly monotonic in z that
is if z>% then g(z1.22.....21.2i,Zi41, ... Zs41) >
821,22, - 21,21, Zig 15 - Z541)-

(2) If m, M is a solution of the system
m=g(my, my,....Ms 1), M=g(Mi, My, ...,Ms;q),

then m = M, where for eachi=1,2,...,8 +1, we set
m, if g is non-decreasing in z;
m; =
' M, if g is non-increasing in z;
and
v M, if g is non-decreasing in z;
Tl omif g is non-increasing in z;.

Then there exists exactly one equilibrium point ¥ of Eq. (5), and
every solution of Eq. (5) converges to .
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