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a b s t r a c t 

In this article, fractional linear electrical systems are investigated. Analytical solutions of the frac- 

tional models are derived using Laplace transform method. Also, numerical simulations using Grünwald–

Letnikov definition are proposed. Comparisons between fractional and classical electrical systems are il- 

lustrated using Laplace transform and nonstandard finite difference method. 
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1. Introduction 

In recent years, fractional calculus has an interest to mathe- 

maticians as it has many engineering applications [1–9,28–31] . 

It provides excellent instruments for the description of memory 

and properties of various materials and processes. Non-integer 

derivatives play an important role in modeling of electrical circuits 

that contains super capacitors and super inductors. Moreover, in 

such electrical circuits, singular linear systems were addressed in 

many papers and books [10–13] . The charging and discharging 

processes of different capacitors in R-C electrical circuits the- 

oretically and experimentally are considered in [14] . Also the 

authors investigated the nonlocal behavior in these processes 

that arising from the time fractality via fractional calculus. The 

existence and uniqueness of the solution of an RLC circuit model 

were discussed and the solution of that model was obtained by 

Adomian Decomposition Method (ADM) and Laplace Transform 
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method in [15] . The solution of a new class of singular fractional 

electrical circuits using Weierstrass regular pencil decomposition 

and Laplace transform are proposed in [16] . In this article, we will 

investigate analytical and numerical solutions for both R-L and 

R-C electrical circuit models using Laplace transform method and 

nonstandard finite difference methods (NSFDM). 

This article is organized as: basic definitions and some prop- 

erties of fractional calculus are given in Section 2 . In Section 3 

analytical solutions for different electrical circuits with fractional 

order derivatives and numerical solution using NSFDMs are de- 

rived, while some illustrative examples with their solutions are 

given in Section 4 . Finally a brief conclusion is given in Section 5 . 

2. Preliminaries 

In this section, we introduce some basic definitions and func- 

tions that have important rules in fractional calculus which are 

further used in this article, [17–25] . 

Definition 2.1. Caputo fractional derivative 

The fractional derivative of a function f (x ) of non-integer order 

α is given as, 
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D 

α f (x ) = 

1 

�(n − α) 

∫ x 

a 

( x − 1) 
n −α−1 d 

n 

d t n 
f ( t ) dt , n − 1 < α < n. 

(2.1) 

Definition 2.2. Riemann–Liouville fractional derivative 

The fractional derivative of the function f (x ) is given as: 

D 

α f (x ) = 

1 

�( n − α) 

d n 

d x n 

∫ x 

a 
( x − t ) 

n −α−1 f (t ) dt , α > 0 . (2.2) 

Definition 2.3. Grünwald–Letnikov fractional derivative 

In 1867, Grünwald–Letnikov defined the fractional derivative of 

a function f (x ) as: 

D 

α f (x ) = lim 

N→∞ 

1 

h 

α

N ∑ 

j=0 

C αj f (x − j h ) , n − 1 < α < n, h = 

1 

N 

, (2.3) 

where C α
0 

= 1 and C α
j 

= ( 1 − 1+ α
j 

) C α
j−1 

. 

The Caputo fractional derivative is not equivalent to the 

Riemann– Liouville fractional derivative and they are related 

by D 

α f (t) = 

R D 

α( f (t) − f (0)) for 0 < α < 1 . If the initial con- 

dition f (0) = 0 , then we have that D 

α f (t) = 

R D 

α f (t) and the 

Grünwald–Letnikov fractional derivatives is equivalent to the 

Caputo fractional derivative, see [19,30] . 

Definition 2.4. Laplace Transform 

If a function f (t) is of exponential order α and is a piece-wise 

continuous on real line, then Laplace transform of f (t) for s > α
is defined by: 

F (s ) = L [ f (t) ] = 

∫ ∞ 

0 

e −st f (t ) dt . (2.4) 

Laplace transform of Caputo derivative is: 

L [ D 

α f (t) ] = s αF (s ) −
n −1 ∑ 

k =0 

s α−k −1 f (k ) ( 0 ) , n = � α� . (2.5) 

Laplace transform of the convolution of two functions: 

The convolution of two functions f (t) and g(t) is defined by: 

f (t) ∗ g(t) = 

∫ t 

0 

f ( t − τ ) g(τ ) dτ, (2.6) 

and the Laplace transform of the convolution of two functions 

f (t) , g(t) is defined by: 

L { f (t) ∗ g(t) } = L 

{∫ t 

0 

f ( t − τ ) g(τ ) dτ

}
= F (s ) G (s ) , (2.7) 

where F (s ) and G (s ) are the Laplace transform of f (t) and g(t) 

respectively. 

In this article, we will generalize some electrical circuits mod- 

els to a fractional order system of order α in sense of caputo 

definition. We assume that the voltage across the inductor v l and 

the capacitor current i c are: 

v l = l 
d α i l 
d t α

, (2.8) 

i c = c 
d αv c 
d t α

, (2.9) 

where d α

d t α
= D 

α is the fractional derivative operator in the sense 

of Caputo derivative. Also l is the inductance, c is the capacitance 

and i l and v c are the inductor current and the capacitor voltage 

respectively. 

Definition 2.5. The function E t ( α, a ) [ 18 , 19 ] 

Fig. 1. Electrical circuit of application 1. 

The function E t ( α, a ) is a solution of the ordinary differential 

equation 

( D − a ) y = 

t α−1 

�(α) 
, Re (α) > 0 (2.10) 

and it is defined by: 

E t ( α, a ) = t α e a t γ ∗( α, a t ) , (2.11) 

where γ ∗( α, a t ) is the incomplete gamma function defined in 

[19] as 

γ ∗( α, z ) = e −z 
∞ ∑ 

k =0 

z k 

�( α + k + 1 ) 
. (2.12) 

If we replace a by ia in ( 2.11 ), then 

E t ( α, ia ) = C t ( α, a ) + i S t ( α, a ) , (2.13) 

where C t ( α, a ) = t υ
∑ ∞ 

k e v en 
( −1 ) k/ 2 ( a t ) k 

�( α+ k +1 ) 
, and 

S t ( α, a ) = t α
∑ ∞ 

k odd 
( −1 ) ( k −1 ) / 2 ( a t ) k 

�( α+ k +1 ) 
. 

The function S t ( α, a ) or C t ( α + 1 , a ) is a solution of the 

following ordinary differential equation (
D 

2 + a 2 
)

y = 

a t α−1 

�(α) 
, α > 0 . 

3. Fractional linear electrical systems 

In this section, we will introduce some applications for some 

electrical circuits with fractional order α, 0 < α ≤ 1 . Analytical 

solutions are briefly obtained for each application. 

3.1. Analytical solutions of fractional systems 

Firstly, we consider the following applications: 

Application 1. Consider the electrical circuit shown in Fig. 1 

with given resistances R 1 , R 2 , R 3 , inductances l 1 , l 2 , l 3 and voltage 

sources v i (t) , i = 1 , 2 . 

Using Kirchhoff’s voltages and currents laws and considering 

( 2.8 ) and ( 2.9 ) we get: 

v 1 (t) = i 1 R 1 + l 1 
d α i 1 
d t α

+ l 3 
d α( i 1 − i 2 ) 

d t α
+ R 3 ( i 1 − i 2 ) , (3.1) 

v 2 (t) + R 3 ( i 1 − i 2 ) + l 3 
d α( i 1 − i 2 ) 

d t α
= i 2 R 2 + l 2 

d α i 2 
d t α

. (3.2) 

We can write Eqs. (3.1) and ( 3.2 ) in the following form [
l 1 + l 3 −l 3 

l 3 −( l 2 + l 3 ) 

]
d α

d t α

[
i 1 (t) 
i 2 (t) 

]
= 

[
−( R 1 + R 3 ) R 3 

−R 3 ( R 2 + R 3 ) 

][
i 1 (t) 
i 2 (t) 

]

+ 

[
v 1 (t) 

−v 2 (t) 

]
. (3.3) 

Let q = [ l 1 + l 3 −l 3 
l 3 −( l 2 + l 3 ) 

] , I(t) = [ i 1 (t) 
i 2 (t) 

] , R = [ −( R 1 + R 3 ) R 3 
−R 3 ( R 2 + R 3 ) 

] , V (t) = 

[ v 1 (t) 
−v 2 (t) 

] , and q −1 = 

−1 
l 1 l 2 + l 1 l 3 + l 2 l 3 [ 

−( l 2 + l 3 ) l 3 
−l 3 l 1 + l 3 

] is the inverse of q . 
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