Paper

Smarandache curves in the Galilean 4-space G_{4}

M. Elzawy ${ }^{\text {a,*, }}$, S. Mosa ${ }^{\text {b }}$
${ }^{a}$ Mathematics Department, Faculty of Science, Tanta University, Tanta, Egypt
${ }^{\mathrm{b}}$ Mathematics Department, Faculty of Science, Damanhour University, Damanhour, Egypt

A R T I C L E I N F O

Article history:

Received 13 March 2016
Revised 14 April 2016
Accepted 24 April 2016
Available online xxx

2010 MSC:

Primary 53A35
Secondary 51A05

Keywords:

Galilean 4-space
Smarandache curve
Frenent
Frame

Abstract

In this paper, we study Smarandache curves in the 4 -dimensional Galilean space G_{4}. We obtain FrenetSerret invariants for the Smarandache curve in G_{4}. The first, second and third curvature of Smarandache curve are calculated. These values depending upon the first, second and third curvature of the given curve. Examples will be illustrated.

Copyright 2016, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Galilean space is the space of the Galilean Relativity. For more about Galilean space and pseudo Galilean space may be found in [1-3]

The geometry of the Galilean Relativity acts like a bridge from Euclidean geometry to special Relativity. The geometry of curves in Euclidean space have been developed a long time ago [4]. In recent years, mathematicians have begun to investigate curves and surfaces in Galilean space [5].

Galilean space is one of the Cayley-Klein spaces. Smarandache curves have been investigated by some differential geometers such as H.S. Abdelaziz, M. Khalifa and Ahmad T. Ali [6]. In this paper, we study Smarandache curve in 4-dimensional Galilean space G_{4} and characterize such curves in terms of their curvature functions.

2. Preliminaries

The three-dimensional Galilean space G_{3}, is the Cayley-Klein space equipped with the projective metric of signature $(0,0,+,+)$. The absolute of the Galilean geometry is an ordered triple (ω, f, I) where ω is the ideal (absolute) plane, f is a line in ω

[^0](absolute line) and I is elliptic involution point $\left(0,0, x_{2}, x_{3}\right) \rightarrow$ ($0,0, x_{3},-x_{2}$).

A plane is called Euclidean if it contains f, otherwise it is called isotropic or, i.e. planes $x=$ const. are Euclidean, and so is the plane ω. A vector $u=\left(u_{1}, u_{2}, u_{3}\right)$ is said to be non-isotropic vector if $u_{1} \neq 0$. all unit non-isotropic vectors are of the form $u=$ $\left(1, u_{2}, u_{3}\right)$. For isotropic vectors $u_{1}=0$ holds.

In the Galilean space G_{3} there are four classes of lines [7]:

1. The (proper) isotropic lines that don't belong to the plane ω but meet the absolute line f.
2. The (proper) non-isotropic lines they don't meet the absolute line f.
3. a proper non-isotropic lines all lines of ω but f.
4. The absolute line f.

Let $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ be two vectors in G_{4}. The Galilean scalar product in G_{4} can be written as

$$
\langle\vec{x}, \vec{y}\rangle_{G_{4}}=\left\{\begin{array}{l}
x_{1} y_{1} \quad \text { if } x_{1} \neq 0 \text { and } y_{1} \neq 0 \\
x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4} \quad \text { if } x_{1}=0 \text { or } y_{1}=0
\end{array}\right.
$$

The norm of the vector $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is defined by $|\vec{x}|_{G_{4}}=\sqrt{\langle\vec{x}, \vec{x}\rangle_{G_{4}}}$.

The Galilean cross product of the vectors x, y, z on G_{4} is defined by

$$
\begin{aligned}
& \vec{x} \times \vec{y} \times \vec{z} \\
& =\left\{\left.\begin{array}{llll}
0 & e_{2} & e_{3} & e_{4} \\
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4} \\
e_{1} & e_{2} & e_{3} & e_{4} \\
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array} \right\rvert\, \quad \text { if } x_{1} \neq 0 \text { or } y_{1} \neq 0 \text { or } z_{1} \neq 0\right.
\end{aligned}
$$

where $e_{1}=(1,0,0,0), e_{2}=(0,1,0,0), e_{3}=(0,0,1,0)$, and $e_{4}=$ ($0,0,0,1$)

The Galilean G_{4} studies all properties invariant under motions of objects in space is even more complex. In addition, it stated this geometry can described more precisely as the study of those properties of 4D space with coordinate which are invariant under general Galilean transformation as follows [8].

$$
\begin{aligned}
x^{\prime}= & (\cos \beta \cos \alpha-\cos \gamma \sin \beta \sin \alpha) x \\
& +(\sin \beta \cos \alpha-\cos \gamma \cos \beta \sin \alpha) y \\
& +(\sin \gamma \sin \alpha) z+\left(v \cos \delta_{1}\right) t+a \\
y^{\prime}= & -(\cos \beta \sin \alpha+\cos \gamma \sin \beta \cos \alpha) x \\
& +(-\sin \beta \sin \alpha+\cos \gamma \cos \beta \cos \alpha) y \\
& +(\sin \gamma \cos \alpha) z+\left(v \cos \delta_{2}\right) t+b
\end{aligned}
$$

$z^{\prime}=(\sin \gamma \sin \beta) x-(\sin \gamma \cos \beta) y$
$+(\cos \gamma) z+\left(v \cos \delta_{3}\right) t+c$
$t^{\prime}=t+d$
with $\cos ^{2} \delta_{1}+\cos ^{2} \delta_{2}+\cos ^{2} \delta_{3}=1$.
A curve $\alpha: I \rightarrow G_{4}$ of $C^{\infty}, I \subset R$ in the Galilean G_{4} is defined by $\alpha(s)=(s, y(s), z(s), w(s))$ where the curve α is parameterized by the Galilean invariant arc-length. The first Frenet-Serret frame, that is, the tangent vector of $\alpha(s)$ in G_{4}, is defined by
$t(s)=\alpha^{\prime}(s)=\left(1, y^{\prime}(s), z^{\prime}(s), w^{\prime}(s)\right)$
The second vector of the Frenet-Serret frame, that is called, the principle normal of $\alpha(s)$ is defined by $n(s)$.
$n(s)=\frac{1}{k_{1}(s)} \alpha^{\prime \prime}(s)=\frac{1}{k_{1}(s)}\left(0, y^{\prime \prime}(s), z^{\prime \prime}(s), w^{\prime \prime}(s)\right)$
The third vector of the Frenet-Serret frame, that is called, the first binormal vector of is defined by
$b_{1}(s)=\frac{1}{k_{2}(s)}\left(0,\left(\frac{y^{\prime \prime}(s)}{k_{1}(s)}\right)^{\prime},\left(\frac{z^{\prime \prime}(s)}{k_{1}(s)}\right)^{\prime},\left(\frac{w^{\prime \prime}(s)}{k_{1}(s)}\right)^{\prime}\right)$
Thus the vector $b_{1}(s)$ is perpendicular to both $t(s)$ and $n(s)$.
The second binormal vector of $\alpha(s)$ which is the fourth vector of the Frenet-Serret frame is defined by $b_{2}(s)$.
$b_{2}(s)=t(s) \times n(s) \times b_{1}(s)$
where $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$ are the first, second and third curvature functions of the curve $\alpha(s)$ which are defined by
$k_{1}(s)=\left|t^{\prime}(s)\right|_{G_{4}}=\sqrt{\left(y^{\prime \prime}(s)\right)^{2}+\left(z^{\prime \prime}(s)\right)^{2}+\left(w^{\prime \prime}(s)\right)^{2}}$
$k_{2}(s)=\left|n^{\prime}(s)\right|_{G_{4}}=\sqrt{\left\langle n^{\prime}, n^{\prime}\right\rangle_{G_{4}}}$
$k_{3}(s)=\left\langle b_{1}^{\prime}(s), b_{2}(s)\right\rangle_{G_{4}}$
If the curvature $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$ are constants, then the curve $\alpha(s)$ is called W-curve. The set $\left\{t(s), n(s), b_{1}(s), b_{2}(s), k_{1}(s)\right.$, $\left.k_{2}(s), k_{3}(s)\right\}$ is called the Frenet-Serret pparatus of the curve α.

The vectors $\left\{t(s), n(s), b_{1}(s), b_{2}(s)\right\}$ are mutually orthogonal vectors

$$
\begin{aligned}
\langle t(s), t(s)\rangle_{G_{4}} & =\langle n(s), n(s)\rangle_{G_{4}}=\left\langle b_{1}(s), b_{1}(s)\right\rangle_{G_{4}} \\
& =\left\langle b_{2}(s), b_{2}(s)\right\rangle_{G_{4}}=1
\end{aligned}
$$

and

$$
\begin{aligned}
\langle t(s), n(s)\rangle_{G_{4}} & =\left\langle t(s), b_{1}(s)\right\rangle_{G_{4}}=\left\langle t(s), b_{2}(s)\right\rangle_{G_{4}} \\
& =\left\langle n(s), b_{1}(s)\right\rangle_{G_{4}}=\left\langle n(s), b_{2}(s)\right\rangle_{G_{4}} \\
& =\left\langle b_{1}(s), b_{2}(s)\right\rangle_{G_{4}}=0
\end{aligned}
$$

The derivatives of the Frenet-Serret equations are defined as in [9].
$t^{\prime}(s)=k_{1}(s) n(s)$
$n^{\prime}(s)=k_{2}(s) b_{1}(s)$
$b_{1}^{\prime}(s)=-k_{2}(s) n(s)+k_{3}(s) b_{1}(s)$
$b_{2}^{\prime}(s)=-k_{3}(s) b_{1}(s)$

3. $\boldsymbol{t} \boldsymbol{b}_{2}$ Smarandache curves in \boldsymbol{G}_{4}

Definition 1. A curve in G_{4}, whose position vector is obtained by Frenet frame vectors on another curve, is called Smarandache curve.

Let us define special forms of Smarandache curves.
Definition 2. Let $\alpha(s)$ be a unit speed curve in G_{4} with constant curvatures k_{1}, k_{2} and k_{3} and $\left\{t(s), n(s), b_{1}(s), b_{2}(s)\right\}$ be Frenet frame on it. The $t b_{2}$ Smarandache curves are defined by
$\beta\left(s_{\beta}(s)\right)=\frac{1}{\sqrt{2}}\left(t(s)+b_{2}(s)\right)$
Theorem 1. Let $\alpha=\alpha(s)$ be a unit speed curve with constant curvatures $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$ and $\beta\left(s_{\beta}(s)\right)$ be tb b_{2} Smarandache curve defined by frame vectors of $\alpha(s)$, then
$t_{\beta}\left(s_{\beta}(s)\right)=\frac{k_{1} n-k_{3} b_{1}}{\sqrt{k_{1}^{2}+k_{3}^{2}}}$
$n_{\beta}\left(s_{\beta}(s)\right)=\frac{k_{2} k_{3} n+k_{1} k_{2} b_{1}-k_{3}^{2} b_{2}}{\sqrt{k_{2}^{2} k_{3}^{2}+k_{1}^{2} k_{2}^{2}+k_{3}^{4}}}$
$b_{1 \beta}\left(s_{\beta}(s)\right)=\frac{\left(-k_{1} k_{2}^{2} n+k_{3}\left(k_{2}^{2}+k_{3}^{2}\right) b_{1}+k_{1} k_{2} k_{3} b_{2}\right)}{\sqrt{k_{2}^{2}+k_{3}^{2}} \sqrt{k_{2}^{2} k_{3}^{2}+k_{1}^{2} k_{2}^{2}+k_{3}^{4}}}$
$b_{2 \beta}\left(s_{\beta}(s)\right)=\frac{k_{1} k_{3}\left(k_{1}^{2} k_{2}^{2}+k_{3}^{4}-k_{2}^{2} k_{3}^{2}\right) t}{\sqrt{k_{2}^{2}+k_{3}^{2}} \sqrt{k_{1}^{2}+k_{3}^{2}}\left(k_{2}^{2} k_{3}^{2}+k_{1}^{2} k_{2}^{2}+k_{3}^{4}\right)}$
$k_{1 \beta}\left(s_{\beta}(s)\right)=\frac{\sqrt{2} \sqrt{k_{2}^{2} k_{3}^{2}+k_{1}^{2} k_{2}^{2}+k_{3}^{4}}}{k_{1}^{2}+k_{3}^{2}}$
$k_{2 \beta}\left(s_{\beta}(s)\right)=\frac{\sqrt{2} \sqrt{k_{2}^{2}+k_{3}^{2}}}{\sqrt{k_{1}^{2}+k_{3}^{2}}}$
$k_{3 \beta}\left(s_{\beta}(s)\right)=0$
Proof. Let $\beta=\beta\left(s_{\beta}(s)\right)$ be a $t b_{2}$ Smarandache curve of the curve $\alpha(s)$. Then

$$
\begin{aligned}
\beta & =\beta\left(s_{\beta}(s)\right)=\frac{1}{\sqrt{2}}\left(t(s)+b_{2}(s)\right) \\
\beta^{\prime}\left(s_{\beta}\right) & =\frac{d \beta\left(s_{\beta}(s)\right)}{d s}=\frac{d \beta\left(s_{\beta}\right)}{d s_{\beta}} \cdot \frac{d s_{\beta}}{d s}=\frac{1}{\sqrt{2}}\left(t^{\prime}(s)+b_{2}^{\prime}(s)\right) \\
& =\frac{1}{\sqrt{2}}\left(k_{1} n-k_{3} b_{1}\right)
\end{aligned}
$$

https://daneshyari.com/en/article/6899002

Download Persian Version:

https://daneshyari.com/article/6899002

Daneshyari.com

[^0]: * Corresponding author. Tel.: +00201024378883.

 E-mail addresses: mervatelzawy@science.tanta.edu.eg (M. Elzawy), saffamosa@yahoo.com (S. Mosa).

