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a b s t r a c t 

Steady mixed convection micropolar fluid flow towards stagnation point formed on horizontal linearly 

stretchable melting surface is studied. The vortex viscosity of micropolar fluid along a melting surface 

is proposed as a constant function of temperature while dynamic viscosity and thermal conductivity are 

temperature dependent due to the influence of internal heat source on the fluid. Similarity transforma- 

tions were used to convert the governing equation into non-linear ODE and solved numerically. A para- 

metric study is conducted. An analysis of the results obtained shows that the flow-field is influenced 

appreciably by heat source, melting, velocity ratio, variable viscosity and thermal conductivity. 
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1. Introduction 

Within the last few decades, many researchers have reported 

the behavior of fluid flow within a thin layer formed on a stretch- 

able surface in the presence of pressure gradient. The study of 

stagnation point flow was pioneered by Hiemenz [1] . Stagnation 

point flow appears in virtually all fields of science and engineer- 

ing. Shateyi and Makinde [2] stated that a flow can be stagnated 

by a solid wall or a stagnation point in the interior of the fluid 

domain. For more related studies on stagnation point flow, pre- 

diction of skin-friction and heat/mass transfer near stagnation re- 

gions see Refs. [3–6] . Realistically, during the industrial production 

of polymer fluids, colloidal solutions and fluid containing small ad- 

ditives; there is often a point where the local velocity of the fluid 

possesses symmetric stress tensor and micro-rotation of particles 

is zero. Some fluids possess microstructure and belong to class of 

fluid with nonsymmetric stress tensor. This kind of fluid consists of 

rigid, randomly oriented particles suspended in a viscous medium; 
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see Lukaszewicz [7] . Micropolar fluid supports couple stress and 

distributed body torque which cannot be accurately study by us- 

ing classical Navier–Stokes equation or the viscoelastic flow mod- 

els. Eringen in [8,9] started an analysis on the theory of micropolar 

fluids which provided a mathematical model for its non-Newtonian 

behavior. Recently, Sandeep et al. [10] adopted the idea and re- 

ported the effect of radiation on a stagnation point flow of microp- 

olar fluid over a nonlinearly stretching surface. It is a well-known 

fact in the field of fluid dynamics that static pressure is highest 

when the velocity is zero and hence static pressure is at its max- 

imum value at stagnation points. In most cases, engineers in the 

industry tend to introduce internal heat generation to reduce drag 

and enhance easy flow of fluid around stagnation point where the 

velocity is zero. Internal energy generation can be explained as a 

scientific method of generating heat energy within a body by a 

chemical, electrical or nuclear process. Natural convection induced 

by internal heat generation is a common phenomenon in nature. 

Crepeau and Clarksean [11] carried out a similarity solution for a 

fluid with an exponentially decaying heat generation term. How- 

ever, micropolar fluid flow towards a stagnation point on a melt- 

ing surface is significant. In the presence of space heat source, 
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dynamic viscosity and thermal conductivity may certainly vary 

with temperature whereas the vortex viscosity may never be in- 

fluenced or influenced infinitesimally. 

From the knowledge of kinetic theory of matter, every solid 

melts if expose to a high temperature. In an earlier study, the effect 

of melting on heat transfer was studied by Tien and Yen [12] . In 

recent years, many researchers have investigated and reported the 

effect of melting parameters. For more details, see Refs. [13–16] . 

In all of the above mentioned studies, fluid viscosity and thermal 

conductivity was assumed to be constant function of temperature 

within the boundary layer. However, it is known that the physical 

properties of the fluid may change significantly when expose to 

internal generated temperature. For lubricating fluids, heat gener- 

ated by the internal friction and the corresponding rise in temper- 

ature affect the viscosity of the fluid and so the fluid viscosity can 

no longer be assumed constant. In a case of melting as reported 

by many researchers; it is important to notice that temperature of 

fluid layers at free stream may also have significant effect on the 

intermolecular forces of the micropolar fluid. The increase of tem- 

perature may also leads to a local increase in the transport phe- 

nomena by reducing the viscosity across the momentum boundary 

layer and so the heat transfer rate at the wall may also be affected 

greatly. According to Refs. [17,18] and Meyers et al. [19] , it is a well- 

known fact that properties of fluid which are most sensitive to 

an increase in temperature are viscosity and thermal conductivity. 

Considering this concept, effects of temperature-dependent viscos- 

ity and variable thermal conductivity on unsteady MHD flow past 

an impulsively started vertical surface and MHD non-Darcy mixed 

convective diffusion of species over a stretching sheet was consid- 

ered in [20,21] . Motivated by all the works mentioned above, it is 

of interest to extend the work of [4,22,23] by including such ef- 

fects on the flow and also consider the diffusion of species (mass) 

in micropolar fluid flow over a melting surface. This is to further 

examine a case in which the vortex viscosity of micropolar fluid is 

negligibly influenced due to the nature of wall temperature in the 

case of melting heat transfer. 

2. Problem formulations 

Steady laminar incompressible flow, heat and mass transfer of 

a micropolar fluid towards a horizontal linearly stretching melting 

surface is considered. It is assumed that the temperature of the 

melting surface is T m 

while the temperature in the free-stream is 

T ∞ 

such that T m 

< T ∞ 

. Consequently, the species/mass of the mi- 

cropolar fluid at the melting wall C m 

and at the free stream C ∞ 

satisfies C m 

< C ∞ 

. The temperature and concentration of the solid 

far from the interface is T o ( < T m 

) and C o ( < C m 

) respectively. The x - 

axis is along the melting surface while y -axis is normal to it. It is 

assumed that the stretching of fluid layer at the free stream (i. e. 

region of inviscid) is u e → ax and stretching velocity of the melting 

surface u w 

= cx where both a and c are known as stretching index 

with unit s −1 . Positive values of a and c corresponds to stretch- 

ing of the surface while x measures the distance along the surface 

of the plate. Two equal and opposite forces are introduced along 

x -axis so that the horizontal melting wall is stretched keeping the 

origin fixed. This external force induces the fluid to flow in x direc- 

tion. According to Sir Isaac Newton, the differential form of viscous 

forces 

τ ∗ = 

F 

A 

= μ
∂u 

∂y 
. 

Where the local shear velocity is ∂u 
∂y 

and μ is known as constant 

of proportionality. Since τ ∗ = μ∂u 
∂y 

, this formulae assumes that the 

fluid satisfies all the conditions of Couette flow along a parallel 

lines and y axis perpendicular to the flow, points in the direction 

of maximum shear velocity. Upon using the scaling analysis (order 

of magnitude) according to Ludwig Prandtl, this often leads to the 

simplification of the remaining viscous term of momentum equa- 

tion as 

μ

ρ

∂ 2 u 

∂y 2 
= 

1 

ρ

∂ 

∂y 

(
μ

∂u 

∂y 

)
(1) 

when investigating a case in which viscosity of the fluid flow vary 

with temperature due to the correlation between the two concepts 

(i.e. variation of viscosity due to pressure gradient as in the case of 

Couette flow and variation of viscosity due to temperature). In a 

case of micropolar fluid where the addition of dynamic viscosity 

and vortex viscosity plays important role in the modeling of de- 

viatoric stress tensor, it may not be realistic to impose the same 

condition as in Eq. (1) on the fluid flow over a melting surface. 

Likewise, it may not be valid to neglect the influence of temper- 

ature on the dynamic viscosity of micropolar fluid. It is very im- 

portant to note that base on this fact, the vortex viscosity might 

not be influenced the same way with dynamic viscosity. A vortex 

is a region in a fluid medium in which the flow is mostly rotat- 

ing around an axis line, the vortical flow that occurs either on a 

straight axis or a curved axis Loper [24] and Ref. [18] . Examples 

include whirlpools in the smoke rings, dust devil, wake of a boat, 

paddle or aeroplane. It is important to also note that both vortex 

and rotation of micro-elements may be restrained near the wall 

which possesses low heat energy. In view of this, vortex viscosity 

is assumed to be constant function of temperature. There are sev- 

eral models for shear viscosity e.g. exponential model, Arrhenius 

model, Williams Landel–Ferry model, Masuko–Magill model and 

Batchelor model. All these models were developed for either liq- 

uid or gases in which vortex viscosity is zero or totally neglected 

or out of consideration. Under the usual boundary-layer approxi- 

mations, the basic equations taking into account the presence of 

internal heat generation in the energy equation for a micropolar 

fluid can be written as 

∂u 

∂x 
+ 

∂v 
∂y 

= 0 , (2) 

u 

∂u 

∂x 
+ v 

∂u 

∂y 
= u e 

∂u e 

∂x 
+ 

1 

ρ

∂ 

∂y 

(
μ(T ) 

∂u 

∂y 

)
+ 

τ

ρ

∂ 2 u 

∂y 2 

+ 

τ

ρ

∂N 

∂y 
−

(
μ + τ

ρδ

)
(u e − u ) , (3) 

u 

∂N 

∂x 
+ v 

∂N 

∂y 
= 

γ ∗

ρ j 

∂ 2 N 

∂y 2 
− τ

ρ j 

(
2 N + 

∂u 

∂y 

)
, (4) 

u 

∂T 

∂x 
+ v 

∂T 

∂y 
= 

1 

ρC p 

∂ 

∂y 

(
κ(T ) 

∂ T 

∂ y 

)

+ 

κ(T ) a 

C p μ(T ) 
[ A 

∗(T ∞ 

− T m 

) e −y 
√ 

a 
ϑ + B 

∗(T − T m 

)] , (5) 

u 

∂C 

∂x 
+ v 

∂C 

∂y 
= D m 

∂ 2 C 

∂y 2 
. (6) 

The appropriate boundary conditions on velocity, micro-rotation 

and temperature are 

u w 

= cx, κ(T ) 
∂ T 

∂ y 
= ρ[ λ∗ + c s (T m 

− T o )] v (x, 0) , 

N = −m o 
∂u 

∂y 
, T = T m 

, C = C m 

at y = 0 , (7) 

u e → ax, N → 0 , T → T ∞ 

, C → C ∞ 

as y → ∞ . (8) 

The formulation of κ(T ) ∂T 
∂y 

= ρ[ λ∗ + c s (T m 

− T o )] v (x, 0) in 

Eq. (7) states that the heat conducted to the melting surface 
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