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In this paper we shall examine the periodicity and formularization of the solutions for a
system of semi-max-type difference equations of second order in the form

n € Ny, where Ng = N U {0}, (4,)nen, and (B,),en, are two-periodic positive sequences, and initial
values xo, x_1, Yo, y—1 € (0, +00).
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1. Introduction

In recent years, the studying of nonlinear difference equations
has been a considerable solicitude where there exist abundant
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models portray sociology, economics, real life situations in pop-
ulation biology, genetics, probability theory, psychology etc.
whose exemplified by these kinds of equations (see, e.g. [1-8]).
Also some papers are devoted to the implementing of max-type
difference equations, see, for proverb [9] and references cited
therein. In particular many experts have been focused on the
investigation of the behavior of the following difference equa-
tion
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where s, k € N, and (4,),en, 1s a sequence of real numbers (see,
for example, [10,11]). Positive solutions of Eq. (1) are usually
related with the periodicity. If solutions are not of constant sign
then it is known that Eq. (1) can have non-periodic solutions
which could be even unbounded [12]. For more papers about
max-type difference equations we refer the reader to the refer-
ences [13-16]. Motivated by above mentioned papers, here we
will study solutions of the system of difference equations
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where n e Ny, (4,)nen, and (By)en, are positive periodic
sequences with period two, and initial values xo, x_i, Yo,
y_1 € (0, +00).

2. Closed form expression of system (2)

In the section, we study the behavior of solutions of system (2).
In order to achieve this target , we sub-edit and establish four
theorems depending on the relationships between the quantities
A" and x_;, and, - ° andy 1.

Remark 1. From (2), we can note that every even (respectively
odd) term of the sequences (x,), (y,) depend only on A4, By
(respectively 4;, By) and the previous even (respectively odd)
terms of both (x,), (v,)-

Definition 1. A solution (x,, y,){2._, of system (2), is said to be
eventually periodic with period p € N if there is an ny > —1, such
that x4, = Xy, Ynip = yn forn > ny. If ny = —1, then we say that
the sequence (x,, y,)2_, is periodical and with period p. Period
p 1is said to be a minimal one if there is no p; < p which is a
period to the sequence (x,, y,)5_,.
Theorem 2. Suppose that (x,, y,) is a solution of system (2) such
that A < x|, xBfUI < y_1. Then the following statements hold.:

then
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Proof. By mathematical induction. For n = 0, the result holds.
Now suppose that & > 0 and that all the relations in the theorem
hold for n = k. Now we shall prove that the relations hold for
n=k+1.
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