ARTICLE IN PRESS

Journal of the Egyptian Mathematical Society (2016) 000, 1-6

Egyptian Mathematical Society

Journal of the Egyptian Mathematical Society

www.etms-eg.org www.elsevier.com/locate/joems

Original Article

Topological representation and quantic separation axioms of semi-quantales

Kamal El-Saady*

Department of Mathematics, Faculty of Science, South Valley University, Qena 83523, Egypt

Received 13 July 2015; revised 29 October 2015; accepted 12 January 2016 Available online xxx

Keywords

Semi-quantales; Spatiality; Sobriety; L-quasi-topology; Separation axioms **Abstract** An adjunction between the category of semi-quantales and the category of lattice-valued quasi-topological spaces is established. Some characterizations of quantic separation axioms, for semi-quantales and lattice-valued quasi-topological spaces, are obtained and some relations among these axioms are established.

2010 Mathematics Subject Classification: 06F07; 54A40; 54H10; 54D15

Copyright 2016, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Quantales were first introduced in the eighties by Mulvey [1] in the ambitious aim of providing a possible common latticetheoretic setting for constructive foundations for quantum mechanics, as well as a non-commutative analogue of the maximal spectrum of a C^* -algebra, and for non-commutative logics. The study of such ordered algebraic structures goes back to a series of papers by Ward and Dilworth [2–4] in the 1930s. They were motivated by the ideal theory of commutative rings. Following

* Tel.: +201126040061.

E-mail address: el-saady@lycos.com, kehassan@sci.svu.edu.eg Peer review under responsibility of Egyptian Mathematical Society.

ELSEVIER Production and hosting by Elsevier

Mulvey, various types and aspects of quantales have been considered by many authors [5–8].

Since quantale theory provides a powerful tool in studying non-commutative structures, it has a wide applications, especially in studying non-commutative C^* -algebra theory [6,9], the ideal theory of commutative ring [10], linear logic [11] which supports part of the foundation of theoretic computer science [12,13] and so on.

In 1989 Borceux and van den Bossche [14] proposed a duality between spatial right-sided idempotent quantales and sober quantum spaces. In 2015, Höhle [15] established two adjunctions based on right-sided idempotent quantales. The first adjunction based on quantum spaces as an extension of the duality between spatial right-sided idempotent quantales and sober quantum spaces. The second adjunction between the category of right-sided idempotent quantales and the category of threevalued topological spaces. Both adjunctions restricts to the well known Papert–Papert–Isbell adjunction [16,17] between topological spaces and locales. In 2014 Demirci [18] established an

S1110-256X(16)00016-X Copyright 2016, Egyptian Mathematical Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). http://dx.doi.org/10.1016/j.joems.2016.01.002

abstract categorical analogue of famous Papert–Papert–Isbell adjunction to a general adjunction $X \dashv C^{op}$ in which *C* is an abstract category and *X* is a suitable category of such counterparts. Also he formulated two main categorical theorems: Fundamental Categorical Adjunction Theorem (FCAT) and Fundamental Categorical Duality Theorem (FCDT).

In this paper we aim to introduce and study a more general adjunction between the category of semi-quantales [19] and the category of lattice-valued quasi-topological spaces [20]. Also, we aim to study some separation axioms for semiquantales with applications to lattice-valued quasi-topological spaces.

The present paper has been prepared in four sections. After this introductory section, the next section overviews the some useful concepts about semi-quantales, quantic nucleus and L-quasi-topologies. In Section 3, as one of the main contribution of this paper, we construct a dual adjunction between the category SQuant of semi-quantales and the category L-QTop of lattice-valued quasi-topological spaces. Also, by defining L-Qspatiality in the given category SQuant and L-Qsobriety in L-QTop, we show that the full subcategory of SQuant of all L-Qspatial objects and the full subcategory of L-QTop of all L-Qsober objects are dually equivalent. The results of this section can be obtained as applications of Fundamental Categorical Adjunction Theorem (FCAT) and Fundamental Categorical Duality Theorem (FCDT) [18]. Finally in Section 4, we will discuss the counterparts of the quantic regularity and normality axioms of objects in the category SQuant with applications to objects in the category *L*-**QTop**.

2. Preliminaries

By a \bigvee -semilattice we mean a partially ordered set (L, \leq) having arbitrary \bigvee . A \bigvee -semilattice homomorphism is a map preserving arbitrary \bigvee .

Definition 2.1 ([19]). (lattice structures and associated categories).

- A semi-quantale (L, ≤, ⊗), abbreviated as s-quantale, is a V-semilattice (L, ≤) equipped with a binary operation ⊗ : L × L → L, with no additional assumptions, called a tensor product. The category SQuant comprises all semi-quantales together with s-quantale morphisms (i.e., mappings preserving ⊗ and arbitrary V). By SSQuant [20], we mean a non-full subcategory of SQuant comprising all semi-quantales and all ss-quantale morphisms (i.e., mappings preserving ⊗, arbitrary V and ⊤). SSQuant and SQuant clearly share the same objects.
- (2) A quantale (L, ≤, ⊗) is an s-quantale whose multiplication is associative and distributes across ∨ from both sides [7]. Quant is the full subcategory of SQuant of all quantales.
- (3) An ordered semi-quantale (L, ≤, ⊗), abbreviated as osquantale, is an s-quantale in which ⊗ is isotone in both variables. OSQuant is the full subcategory of SQuant of all os-quantales.
- (4) A unital semi-quantale (L, ≤, ⊗), abbreviated as usquantale, is an s-quantale in which ⊗ has an identity element e ∈ L called the unit. USQuant comprises all usquantales together with all mappings preserving arbitrary V, ⊗, and e.

- (5) A commutative semi-quantale (L, ≤, ⊗), abbreviated as cs-quantale, is an s-quantale in which, ⊗ that is, q₁ ⊗ q₂ = q₂ ⊗ q₁ for every q₁, q₂ ∈ L. CSQuant is the full subcategory of SQuant of all commutative semi-quantales.
- (6) A complete quasi-monoidal lattice (L, ≤, ⊗), abbreviated as cqml, is an os-quantale having ⊤ idempotent i.e., ⊤ ⊗ ⊤ = ⊤. CQML comprises all cqml together with mappings preserving arbitrary ∨, ⊗, and ⊤ [21,22]. Note that CQML is a subcategory of OSQuant.
- (7) A semi-frame [22] is a us-quantale whose multiplication and unit are ∧ and ⊤ respectively. SFrm is the category of all semi-frames together with mappings preserving finite ∧ and arbitrary ∨. SFrm is a full subcategory of CQML.
- (8) A frame [23] is a unital quantale whose multiplication and unit are ∧ and ⊤ respectively. Frm is the subcategory of Quant of all frames and morphisms preserving finite ∧ and arbitrary V.

Definition 2.2 ([24]). An s-quantale is called distributive (dsquantale) provided that its multiplication distributes across finite \lor from both sides. **DSQuant** is the category of ds-quantales.

Definition 2.3 ([20]). Let $L = (L, \leq, \otimes)$ be an s-quantale. A subset $K \subseteq L$ is a subsemi-quantale of L iff it is closed under the tensor product \otimes and arbitrary \bigvee . A subsemi-quantale K of L is said to be strong iff \top belongs to K. If L is a us-quantale with the identity e, then a subsemi-quantale K of L is called a unital subsemi-quantale of L iff e belongs to K.

Definition 2.4 ([25]). Let Q be a semi-quantale. An element $\top \neq p \in Q$ is said to be prime if $a \otimes b \leq p$ implies $a \leq p$ or $b \leq p$ for all $a, b \in Q$. The set of all prime elements of Q, denoted by Pr(Q).

Definition 2.5 (see [7]). Let $Q \in |\mathbf{SQuant}|$. A quantic nucleus on Q is a closure operator $j: Q \to Q$ such that $j(a) \otimes j(b) \leq j(a \otimes b)$ for all $a, b \in Q$.

A subset $S \subseteq Q$ is called a quantic quotient if $S = Q_j$ for some quantic nucleus j, where $Q_j = \{a \in Q : j(a) = a\}$.

Let X be a non-empty set and let L be a complete lattice or $L \in |\mathbf{SQuant}|$. An L-fuzzy subset (or L-set) of X is a mapping A: $X \to L$. The family of all L-fuzzy subsets on X will be denoted by L^X . The smallest element and the largest element in L^X are denoted by \perp and \top , respectively.

For an ordinary mapping $f: X \longrightarrow Y$, one can define the mappings

$$f_L^{\rightarrow}: L^X \rightarrow L^Y$$
 and $f_L^{\leftarrow}: L^Y \rightarrow L^X$

by

$$f_L^{\rightarrow}(A)(y) = \bigvee \{A(x) : x \in X, f(x) = y\} \text{ and } f_L^{\leftarrow}(B) = B \circ f$$

respectively.

Theorem 2.6 ([19]). Let $L \in |\mathbf{SQuant}|$, X, Y be a nonempty ordinary sets and $f : X \longrightarrow Y$ be an ordinary mapping, then we have:

- (1) f_L^{\rightarrow} preserves arbitrary \bigvee ;
- (2) f_L^{\leftarrow} preserves arbitrary \bigvee , \otimes , and all constant maps;
- (4) f_L^{\leftarrow} preserves the unit if $L \in |\mathbf{USQuant}|$.

For a fixed $L \in |$ **SQuant**| and a set X, an L-quasi-topology on X[19] is a subs-quantale τ of $L^X = (L^X, \leq, \otimes)$, i.e., the following axioms are satisfied:

Please cite this article as: K. El-Saady, Topological representation and quantic separation axioms of semi-quantales, Journal of the Egyptian Mathematical Society (2016), http://dx.doi.org/10.1016/j.joems.2016.01.002

Download English Version:

https://daneshyari.com/en/article/6899020

Download Persian Version:

https://daneshyari.com/article/6899020

Daneshyari.com