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Abstract An adjunction between the category of semi-quantales and the category of lattice-valued
quasi-topological spaces is established. Some characterizations of quantic separation axioms, for
semi-quantales and lattice-valued quasi-topological spaces, are obtained and some relations among
these axioms are established.
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1. Introduction

Quantales were first introduced in the eighties by Mulvey [1]
in the ambitious aim of providing a possible common lattice-
theoretic setting for constructive foundations for quantum me-
chanics, as well as a non-commutative analogue of the maximal
spectrum of a C∗-algebra, and for non-commutative logics. The
study of such ordered algebraic structures goes back to a series
of papers by Ward and Dilworth [2–4] in the 1930s. They were
motivated by the ideal theory of commutative rings. Following
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Mulvey, various types and aspects of quantales have been con-
sidered by many authors [5–8].

Since quantale theory provides a powerful tool in studying
non-commutative structures, it has a wide applications, espe-
cially in studying non-commutative C∗-algebra theory [6,9], the
ideal theory of commutative ring [10], linear logic [11] which
supports part of the foundation of theoretic computer science
[12,13] and so on.

In 1989 Borceux and van den Bossche [14] proposed a dual-
ity between spatial right-sided idempotent quantales and sober
quantum spaces. In 2015, Höhle [15] established two adjunc-
tions based on right-sided idempotent quantales. The first ad-
junction based on quantum spaces as an extension of the duality
between spatial right-sided idempotent quantales and sober
quantum spaces. The second adjunction between the category
of right-sided idempotent quantales and the category of three-
valued topological spaces. Both adjunctions restricts to the well
known Papert–Papert–Isbell adjunction [16,17] between topo-
logical spaces and locales. In 2014 Demirci [18] established an
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abstract categorical analogue of famous Papert–Papert–Isbell
adjunction to a general adjunction X�Cop in which C is an
abstract category and X is a suitable category of such coun-
terparts. Also he formulated two main categorical theorems:
Fundamental Categorical Adjunction Theorem (FCAT) and
Fundamental Categorical Duality Theorem (FCDT).

In this paper we aim to introduce and study a more gen-
eral adjunction between the category of semi-quantales [19]
and the category of lattice-valued quasi-topological spaces
[20]. Also, we aim to study some separation axioms for semi-
quantales with applications to lattice-valued quasi-topological
spaces.

The present paper has been prepared in four sections. After
this introductory section, the next section overviews the some
useful concepts about semi-quantales, quantic nucleus and
L-quasi-topologies. In Section 3, as one of the main contribu-
tion of this paper, we construct a dual adjunction between the
category SQuant of semi-quantales and the category L-QTop
of lattice-valued quasi-topological spaces. Also, by defining
L-Qspatiality in the given category SQuant and L-Qsobriety
in L-QTop, we show that the full subcategory of SQuant of all
L-Qspatial objects and the full subcategory of L-QTop of all L-
Qsober objects are dually equivalent. The results of this section
can be obtained as applications of Fundamental Categorical
Adjunction Theorem (FCAT) and Fundamental Categorical
Duality Theorem (FCDT) [18]. Finally in Section 4, we will
discuss the counterparts of the quantic regularity and normal-
ity axioms of objects in the category SQuant with applications
to objects in the category L-QTop.

2. Preliminaries

By a
∨

-semilattice we mean a partially ordered set (L, ≤) having
arbitrary

∨
. A

∨
-semilattice homomorphism is a map preserv-

ing arbitrary
∨

.

Definition 2.1 ([19]). (lattice structures and associated cate-
gories).

(1) A semi-quantale (L, ≤, ⊗), abbreviated as s-quantale,
is a

∨
-semilattice (L, ≤) equipped with a binary op-

eration ⊗ : L × L −→ L, with no additional assump-
tions, called a tensor product. The category SQuant com-
prises all semi-quantales together with s-quantale mor-
phisms (i.e., mappings preserving ⊗ and arbitrary

∨
). By

SSQuant [20], we mean a non-full subcategory of SQuant
comprising all semi-quantales and all ss-quantale mor-
phisms (i.e., mappings preserving ⊗, arbitrary

∨
and �).

SSQuant and SQuant clearly share the same objects.
(2) A quantale (L, ≤, ⊗) is an s-quantale whose multipli-

cation is associative and distributes across
∨

from both
sides [7]. Quant is the full subcategory of SQuant of all
quantales.

(3) An ordered semi-quantale (L, ≤, ⊗), abbreviated as os-
quantale, is an s-quantale in which ⊗ is isotone in both
variables. OSQuant is the full subcategory of SQuant of
all os-quantales.

(4) A unital semi-quantale (L, ≤, ⊗), abbreviated as us-
quantale, is an s-quantale in which ⊗ has an identity el-
ement e ∈ L called the unit. USQuant comprises all us-
quantales together with all mappings preserving arbitrary∨

, ⊗, and e.

(5) A commutative semi-quantale (L, ≤, ⊗), abbreviated as
cs-quantale, is an s-quantale in which, ⊗ that is, q1 ⊗ q2 =
q2 ⊗ q1 for every q1, q2 ∈ L. CSQuant is the full subcate-
gory of SQuant of all commutative semi-quantales.

(6) A complete quasi-monoidal lattice (L, ≤, ⊗), abbrevi-
ated as cqml, is an os-quantale having � idempotent i.e.,
� ⊗ � = �. CQML comprises all cqml together with
mappings preserving arbitrary

∨
,⊗, and � [21,22]. Note

that CQML is a subcategory of OSQuant.
(7) A semi-frame [22] is a us-quantale whose multiplication

and unit are ∧ and � respectively. SFrm is the category of
all semi-frames together with mappings preserving finite
∧ and arbitrary

∨
. SFrm is a full subcategory of CQML.

(8) A frame [23] is a unital quantale whose multiplication and
unit are ∧ and � respectively. Frm is the subcategory of
Quant of all frames and morphisms preserving finite ∧
and arbitrary

∨
.

Definition 2.2 ([24]). An s-quantale is called distributive (ds-
quantale) provided that its multiplication distributes across fi-
nite ∨ from both sides. DSQuant is the category of ds-quantales.

Definition 2.3 ([20]). Let L = (L,≤, ⊗) be an s-quantale. A sub-
set K⊆L is a subsemi-quantale of L iff it is closed under the ten-
sor product ⊗ and arbitrary

∨
. A subsemi-quantale K of L is

said to be strong iff � belongs to K. If L is a us-quantale with
the identity e, then a subsemi-quantale K of L is called a unital
subsemi-quantale of L iff e belongs to K.

Definition 2.4 ([25]). Let Q be a semi-quantale. An element � �=
p ∈ Q is said to be prime if a⊗b ≤ p implies a ≤ p or b ≤ p for all
a, b ∈ Q. The set of all prime elements of Q, denoted by Pr(Q).

Definition 2.5 (see [7]). Let Q ∈ |SQuant|. A quantic nucleus on
Q is a closure operator j: Q → Q such that j(a)⊗j(b) ≤ j(a⊗b)
for all a, b ∈ Q.

A subset S⊆Q is called a quantic quotient if S = Qj for some
quantic nucleus j, where Qj = {a ∈ Q : j(a) = a}.

Let X be a non-empty set and let L be a complete lattice or
L ∈ |SQuant|. An L-fuzzy subset (or L-set) of X is a mapping A:
X → L. The family of all L-fuzzy subsets on X will be denoted
by LX. The smallest element and the largest element in LX are
denoted by ⊥ and �, respectively.

For an ordinary mapping f : X −→ Y, one can define the
mappings

f →
L : LX → LY and f ←

L : LY → LX

by

f →
L (A)(y) =

∨
{A(x) : x ∈ X, f (x) = y}and f ←

L (B) = B ◦ f

respectively.

Theorem 2.6 ([19]). Let L ∈ |SQuant|, X, Y be a nonempty ordi-
nary sets and f : X −→ Y be an ordinary mapping, then we have:

(1) f →
L preserves arbitrary

∨
;

(2) f ←
L preserves arbitrary

∨
, ⊗, and all constant maps;

(4) f ←
L preserves the unit if L ∈ |USQuant|.

For a fixed L ∈ |SQuant| and a set X, an L-quasi-topology
on X [19] is a subs-quantale τ of LX = (LX , ≤, ⊗) , i.e., the fol-
lowing axioms are satisfied:
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