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Abstract An expression for the stress-strength reliability R = P( X 1 < X 2 ) is obtained when the 
vector ( X 1 , X 2 ) follows a general bivariate distribution. Such distribution includes bivariate com- 
pound Weibull, bivariate compound Gompertz, bivariate compound Pareto, among others. In the 
parametric case, the maximum likelihood estimates of the parameters and reliability function R are 
obtained. In the non-parametric case, point and interval estimates of R are developed using Govin- 
darajulu’s asymptotic distribution-free method when X 1 and X 2 are dependent. An example is given 
when the population distribution is bivariate compound Weibull. Simulation is performed, based on 
different sample sizes to study the performance of estimates. 
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1. Introduction 

Research on stress-strength model and its generalizations has 
been collected in [1] . Several papers estimated the stress- 
strength reliability R = P( X 1 < X 2 ) when the stress (or supply) 
X 1 and strength (or demand) X 2 are independent, in the fre- 
quentist and Bayes cases. See for example [2-13] , among others. 
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Estimation of R when ( X 1 , X 2 ) follows a bivariate exponential 
distribution is discussed in Chapter 3 in [1] and the references 
therein. 

Estimation of R in the non-parametric set up was studied 

by several authors. See for example [14-19] , among others. AL- 
Hussaini et al. [20] considered parametric estimation of R when 

X 1 and X 2 are independent and each of which is a finite mixture 
of lognormal components. Point and interval estimates were ob- 
tained and compared in the parametric versus non-parametric 
cases. 

In this paper, R is estimated when the vector ( X 1 , X 2 ) follows 
a general bivariate distribution. 

The rest of the paper is organized as follows: A univariate 
and bivariate distributions are given in Section 2 . The model 
of stress-strength reliability is described in Section 3 . Section 4 
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deals with maximum likelihood and non-parametric estima- 
tions of R. Simulation study with illustrations followed by con- 
cluding remarks are given in Section 5 . 

2. Univariate and bivariate distributions 

AL-Hussaini and Ateya [21] , constructed multivariate distribu- 
tion by compounding L ( θ ; x ) with π (θ ) , where 

L ( θ ; x ) = 

n ∏ 

i = 1 

f X i | � ( x i | θ ) , (1) 

x = ( x 1 , . . . , x n ) , θ ∈ � is a one-dimensional parameter that 
belongs to a parameter space �, 

f X i | � ( x i | θ ) = δi θ z ′ ηi 
( x i ) exp [ − θ δi z ηi ( x i )] , 

0 ≤ a < x i < b ≤ ∞ , (2) 

z ηi ( x i ) is such that f X i | � ( x i | θ ) is a probability density function 

(PDF), θ , ηi > 0 , a and b are positive real numbers such that 
a may assume the value 0 and b the value ∞ . 

The function π (θ ) is given by 

π (θ ) = 

βα


 (α) 
θα − 1 e − β θ , θ > 0 , ( α , β > 0 ) . (3) 

By compounding L ( θ ; x ) with π (θ ) , given by ( 1 ) and ( 3 ), we 
obtain 

f X 1 , . . . , X n ( x 1 , . . . , x n ) = 

∫ ∞ 

0 
L ( θ ; x ) π (θ ) d θ

= 


 ( α + n ) 

 (α) 

[ 

n ∏ 

i = 1 

γi z ′ ηi ( x i ) ] 

] [ 

1 + 

n ∑ 

i = 1 

γi z ηi ( x i ) 

] 

−α−n 

, (4) 

where 

γi = δi / β > 0 , α , ηi > 0 , 0 ≤ a < x i < b ≤ ∞ , 

i = 1 , . . . , n. 

• If, in ( 4 ), n = 1, we obtain 

f X 1 ( x 1 ) = α γi z ′ η1 
( x 1 ) [ 1 + γ1 z η1 ( x 1 ) ] − α − 1 , x 1 > 0 . (5) 

• For � 1 = 1, 2, E ( X 

� 1 
1 ) is given by 

E 

(
X 

� 1 
1 

)
= α

∫ 1 

0 

[
z − 1 
η1 

(
1 − w 1 

γ1 w 1 

)] � 1 

w 1 
α − 1 d w 1 , (6) 

• where z − 1 
η1 

(. ) is the inverse function of z η1 (. ) . 
• If, in ( 4 ), n = 2, we obtain 

f X 1 , X 2 ( x 1 , x 2 ) = α ( α + 1) 

×
[ 

2 ∏ 

i = 1 

γi z ′ ηi ( x i ) 

] [ 

1 + 

2 ∑ 

i = 1 

γi z ηi ( x i ) 

] −α−2 

. (7) 

• So that, for � 1 = 1 , 2 , . . . , and � 2 = 1 , 2 , . . . , we obtain 

E 

(
X 

� 1 
1 X 

� 2 
2 

)
= α (α + 1) 

×
∫ 1 

0 

∫ 1 

0 

[
z − 1 
η1 

(
1 − w 1 

γ1 w 1 

)] � 1 [
z − 1 
η2 

(
1 − w 2 

γ2 w 2 

)]� 2 

× [ w 1 + w 2 − w 1 w 2 ] 
− α−2 w 

α
1 w 

α
2 d w 1 d w 2 . (8) 

3. stress-strength reliability model 

An expression for the stress-strength reliability R is given by the 
following theorem. 

Theorem 3.1. Suppose that a bivariate PDF of the vector 
( X 1 , X 2 ) is given by ( 7 ). Then 

R = P ( X 1 < X 2 ) = 1 − I , (9) 

where 

I = α

∫ 1 

0 
w 

α − 1 

[
1 + γ1 w z η1 

(
z − 1 
η2 

(
1 − w 

γ2 w 

))]− α − 1 

d w . 

(10) 

Proof 
Notice that 

P ( X 1 < X 2 ) = 

∫ ∞ 

0 

∫ x 2 

0 
f X 1 , X 2 ( x 1 , x 2 ) d x 1 d x 2 

= α (α + 1) 

∫ ∞ 

0 
γ2 z ′ η2 ( x 2 ) 

× [ 1 + γ2 z η2 ( x 2 ) ] 
− α − 2 I ( x 2 ) d x 2 , 

where 

I ( x 2 ) = 

∫ x 2 

0 
γ1 z ′ η1 ( x 1 ) [ 1 + A ( x 2 ) z η1 ( x 1 ) ] − α − 2 d x 1 , 

A ( x 2 ) = γ1 [ 1 + γ2 z η2 ( x 2 )] − 1 . (11) 

Let v = [ 1 + A ( x 2 ) z η1 ( x 1 ) ] − 1 . Then z η1 ( x 1 ) = 

1 
A ( x 2 ) 

( 1 v − 1 ) . 

Therefore, d v 
A ( x 2 ) v 2 

= −z ′ η1 
( x 1 ) d x 1 and ( 0 , x 2 ) → (1 , v 0 ) , 

v 0 = [ 1 + A ( x 2 ) z η1 ( x 2 ) ] − 1 . So that I ( x 2 ) = 

γ1 
A ( x 2 ) 

∫ 1 
v 0 

v α d v = 

γ1 
(α+1) A ( x 2 ) 

{ 1 − [ 1 + A ( x 2 ) z η1 ( x 2 ) ] 
− α −1 } . 

Then 

P ( X 1 < X 2 ) = α

∫ ∞ 

0 
γ2 z ′ η2 ( x 2 ) [ 1 + γ2 z η2 ( x 2 ) ] 

− α − 1 

×
{ 

1 − [
1 + A ( x 2 ) z η1 ( x 2 ) 

]−α−1 } 
d x 2 . 

Notice, from ( 11 ), that γ1 
A ( x 2 ) 

= 1 + γ2 z η2 ( x 2 ) . Hence 

P ( X 1 < X 2 ) = α

{ 

[ 1 + γ2 z η2 ( x 2 ) ] 
− α

− α

∣∣∣∣
∞ 

0 

} 

− I = 1 − I, 

where 

I = α

∫ ∞ 

0 
γ2 z ′ η2 ( x 2 ) [ 1 + γ2 z η2 ( x 2 ) ] 

− α − 1 

× [1 + A ( x 2 ) z η1 ( x 2 )] 
−α−1 d x 2 . 

Let 

w = [ 1 + γ2 z η2 ( x 2 ) ] − 1 . (12) 

Then, from ( 12 ) 

1 
w 

− 1 = γ2 z η2 ( x 2 ) and 

− d w 

w 

2 
= γ2 z ′ η2 

( x 2 ) d x 2 . 
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