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Abstract In this work, an active set strategy is used together with a Coleman–Li strategy and 
penalty method to transform a general nonlinear programming problem with bound on the variables 
to unconstrained optimization problem with bound on the variables. A trust-region globalization 
strategy is used to compute a step. A global convergence theory for the proposed algorithm is pre- 
sented under credible assumptions. 

Prefatory numerical experiment on the algorithm is presented. The rendering of the algorithm is 
reported on some classical problem. 
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1. Introduction 

In this paper, we consider the following constrained optimiza- 
tion problem 

mi ni mi ze f (x ) 

sub ject to a i (x ) = 0 i ∈ E, 

a i (x ) ≤ 0 i ∈ I, 
α ≤ x ≤ β, 

(1.1) 
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where f : � 

n → � , a i : � 

n → � 

m , E 

⋃ 

I = { 1 , ..., m } and E 

⋂ 

I = 

∅ , α ∈ {� 

⋃ {−∞}} n , β ∈ {� 

⋃ {∞}} n , m < n , and α < β. The 
functions f and a i , i = { 1 , ..., m } are presumed to be at least 
twice continuously differentiable. We denote the feasible set 
F = { x : α ≤ x ≤ β} and the strict interior feasible set int( F ) = 

{ x : α < x < β} . 
In this paper, we use an active-set strategy in [1] to con- 

vert the above problem to an equality constrained optimization 

problem with bounded variables. The head feature of the sug- 
gested active set is that it is identified and updated naturally by 
the step. See [2–4] . 

A penalty method is used in this paper to transform the 
equality constrained optimization problem which was obtained 

from the above step to unconstrained optimization problem 

with bound on variables. Some penalty functions have been sug- 
gested and many contributions addressing the convergence of 
these methods have been made, see [5,6] . 
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A Coleman–Li strategy in [7] is used to form a sequen- 
tial quadratic programming subproblem of unconstrained op- 
timization problem. For more details, see [7–9] . 

In this paper, we use a trust-region strategy to evaluate a step. 
A trust-region strategy is globalization method which means 
modifying the local method in such a way that it is ensured 

to converge even if the starting point is far away from the so- 
lution. Most trust-region algorithms for solving a constrained 

optimization problem try to merge the trust-region idea with the 
sequential quadratic programming method. See [2–4,10] . Under 
credible assumptions, a convergence theory for our algorithm is 
introduced. 

The rest of this section introduces some notations that are 
used throughout the rest of the paper. The paper is arranged 

as follows. In Section 2 , a detailed characterization of the main 

steps to form a sequential quadratic programming subproblem 

is introduced. In Section 3 , a detailed characterization of an 

interior-point trust-region algorithm is given. Sections 4 –9 are 
devoted to the global convergence theory of the proposed algo- 
rithm under important assumptions. Section 10 contains a Mat- 
lab implementation of the interior-point trust-region algorithm 

and our numerical results. Finally, Section 11 contains conclud- 
ing remarks. 

In this paper, we use the symbol f k = f (x k ) , ∇ f k = ∇ f (x k ) , 

∇ 

2 f k = ∇ 

2 f (x k ) , A k = A (x k ) , ∇ A k = ∇ A (x k ) , Z k = Z(x k ) , 

W k = W (x k ) and so on to denote the function value at a 
particular point. We denote to the Hessian of the objective 
function f k or an approximation to it by H k . Finally, all norms 
are l 2 -norms. 

2. A sequential quadratic subproblem 

Motivated by the active-set strategy in [1] , we define a 0–1 diag- 
onal matrix W ( x ) ∈ � 

m × m whose diagonal entries are 

w i (x ) = 

⎧ ⎨ 

⎩ 

1 , if i ∈ E , 
1 , if i ∈ I and a i (x ) ≥ 0 , 
0 , if i ∈ I and a i (x ) < 0 . 

(2.1) 

Using the above matrix, problem (1.1) is converted to the 
following 

mi ni mi ze f (x ) , 

sub ject to A (x ) T W (x ) A (x ) = 0 , 
α ≤ x ≤ β, 

where A (x ) = (a 1 (x ) , ..., a m 

(x )) T is a continuously differen- 
tiable function. 

Using a penalty method, the above problem is transformed 

to the following unconstrained optimization problem with 

bounds on the variable 

mi ni mi ze f (x ) + 

r 
2 
‖ W (x ) A (x ) ‖ 2 , 

sub ject to α ≤ x ≤ β, 
(2.2) 

where r > 0 is a penalty parameter. Let 

φ(x ; r ) = f (x ) + 

r 
2 
‖ W (x ) A (x ) ‖ 2 . (2.3) 

The Lagrangian function associated with bounded problem 

(2.2) is given by 

L (x, λ, μ; r ) = φ(x ; r ) − λT (x − α) − μT (β − x ) , (2.4) 

where λ and μ are Lagrange multiplier vectors associated with 

the inequality constraints x − α ≥ 0 and β − x ≥ 0 respectively. 
The first-order necessary conditions for a point x ∗ to be a 

solution of problem (1.1) are the existence of multipliers λ∗ ∈ 

� 

n 
+ , and μ∗ ∈ � 

n 
+ , such that ( x ∗, λ∗, μ∗) satisfies 

∇φ(x ∗; r ∗) − λ∗ + μ∗ = 0 , (2.5) 

α ≤ x ∗ ≤ β, (2.6) 

and for all j corresponding to x 

( j ) with finite bound, we have 

λ( j) 
∗ (x 

( j) 
∗ − α( j) ) = 0 , (2.7) 

μ( j) 
∗ (β( j) − x 

( j) 
∗ ) = 0 , (2.8) 

where ∇φ(x ∗; r ∗) = ∇ f (x ∗) + r ∗∇A (x ∗) W (x ∗) A (x ∗) . 
Let Z ( x ) be the diagonal scaling matrix whose diagonal ele- 

ments are given by 

z ( j) (x ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

√ 

(x 

( j) − α( j) ) , if (∇φ(x ; r )) ( j) ≥ 0 and α( j) > −∞ , √ 

( β( j) − x 

( j) ) , if ( ∇φ( x ; r )) ( j) < 0 and β( j) < + ∞ , 

1 , otherwise. 

(2.9) 

For more details see [7,8] . 
Using the diagonal scaling matrix Z ( x ), the first order neces- 

sary conditions for the point x ∗ to solve problem (1.1) are that 
x ∗ ∈ F and solves the following nonlinear system 

Z 

2 (x ) ∇φ(x ; r ) = 0 . (2.10) 

Any point x ∗ ∈ F that satisfies the condition (2.10) is called a 
Karush–Kuhn–Tucker point or KKT point. For more details 
see [5] . 

A system (2.10) is continuous but not differentiable at some 
point x ∈ F . The non-differentiability happens when z ( j) = 0 
and these points are averted by restricting x ∈ int F . Also the 
non-differentiability happens when a variable x 

( j ) has a finite 
lower bound and an infinite upper bound and (∇φ(x ; r )) ( j) = 0 . 
But these points are not significant, so we define a vector ψ( x ) 

whose components are ψ 

( j) (x ) = 

∂( ( z ( j) ) 
2 
) 

∂x ( j) , j = 1 , ..., n such that 
ψ 

( j ) to be zero whenever (∇φ(x ; r )) ( j) = 0 . Hence, we can write 

ψ 

( j) (x ) = 

⎧ ⎨ 

⎩ 

1 , if (∇φ(x ; r )) ( j) ≥ 0 and α( j) > −∞ , 
−1 , if (∇φ(x ; r )) ( j) < 0 and β( j) < + ∞ , 
0 , otherwise. 

(2.11) 

Assuming x ∈ int ( F ) and applied Newton’s method on the sys- 
tem (2.10) , then we have 

[ Z 

2 (x ) ∇ 

2 φ(x ; r ) + diag(∇φ(x ; r )) diag(ψ(x ))] �x 

= −Z 

2 (x ) ∇φ(x ; r ) , (2.12) 

where 

∇ 

2 φ(x ; r ) = H + r ∇ A (x ) W (x ) ∇ A (x ) T , (2.13) 

and H is the Hessian of the objective function f ( x ) or an approx- 
imation to it. Multiplying both sides of Eq. (2.12) by Z 

−1 (x ) and 

scale the step using �x = Z(x ) s, then we have 

[ Z(x ) ∇ 

2 φ(x ; r ) Z(x ) + diag(∇φ(x ; r )) diag(ψ(x ))] s 

= −Z(x ) ∇φ(x ; r ) , (2.14) 
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