
An empirical evaluation of classification algorithms

for fault prediction in open source projects

Arvinder Kaur, Inderpreet Kaur *

Dept: CSE/IT, University School of Information and Communication Technology, Guru Gobind Singh Indraprastha
University, Dwarka, New Delhi 110078, India

Received 23 September 2015; revised 17 March 2016; accepted 8 April 2016

KEYWORDS

Metrics;

Fault prediction;

Receiver Operating Charac-

teristics Analysis;

Machine learning;

Nimenyi test

Abstract Creating software with high quality has become difficult these days with the fact that size

and complexity of the developed software is high. Predicting the quality of software in early phases

helps to reduce testing resources. Various statistical and machine learning techniques are used for

prediction of the quality of the software. In this paper, six machine learning models have been used

for software quality prediction on five open source software. Varieties of metrics have been evaluated

for the software including C & K, Henderson & Sellers, McCabe etc. Results show that Random

Forest and Bagging produce good results while Naı̈ve Bayes is least preferable for prediction.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Building high quality software with limited quality assurance
budgets has become difficult. Various Software prediction

models are used these days to learn fault predictors from soft-
ware metrics. Software fault prediction, prior to the release of
software helps in verification and validation activity and

allocate the limited resources to modules which are predicted
to be fault prone. Early and accurate fault prediction is a better
approach for reducing testing efforts. Study (Mahanti and

Antony, 2005) shows that software companies spend 50–80
percent of their software development effort on testing.

If fault prone modules are known in advance, review, anal-
ysis and testing efforts can be concentrated on those modules.

Early detection of fault prone modules in the software life
cycle has become one of the important goals of fault prediction
because, earlier the detection of fault, the cheaper it is to cor-

rect it. Boehm and Papaccio advised fixing the fault early in the
life cycle can make it cheaper by a factor of 50–200 (Boehm
and Papaccio, 1988). Reliability of delivered products can be

ensured using software quality models.
Software quality estimation using various classifiers is per-

formed where input is some metrics and output is quality attri-

butes. Empirical Study of these classifiers, aids in judgment of
the quality of software being developed.

Various techniques have been suggested to deal with defect
prediction which include categorizing modules, represented by

a set of software metrics or code attributes into fault prone and
non-fault-prone by means of classification model derived from
data as per the previously developed projects (Schneidewind,

* Corresponding author.

E-mail addresses: arvinderkaurtakkar@yahoo.com (A. Kaur), kaur.

inderpreet19@gmail.com (I. Kaur).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

Journal of King Saud University – Computer and Information Sciences (2016) xxx, xxx–xxx

King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com

http://dx.doi.org/10.1016/j.jksuci.2016.04.002
1319-1578 � 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: Kaur, A., Kaur, I. An empirical evaluation of classification algorithms for fault prediction in open source projects. Journal of King
Saud University – Computer and Information Sciences (2016), http://dx.doi.org/10.1016/j.jksuci.2016.04.002

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:arvinderkaurtakkar@yahoo.com
mailto:kaur.inderpreet19@gmail.com
mailto:kaur.inderpreet19@gmail.com
http://dx.doi.org/10.1016/j.jksuci.2016.04.002
http://dx.doi.org/10.1016/j.jksuci.2016.04.002
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2016.04.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jksuci.2016.04.002


1992).This also includes code metrics (e.g., lines of code, com-
plexity) (Li and Henry, 1993; Chidamber and Kemerer, 1994;
Lorenz and Kidd, 1994; McCabe and Associates, 1994; Basili

et al., 1996; Henderson-Sellers, 1996; Ohlsson and Alberg,
1996; Briand et al., 1999; El Emam et al., 2001a,b,c;
Gyimothy et al., 2005; Aggarwal et al., 2006; Nagappan and

Ball, 2005; Nagappan et al., 2006), Process metrics (e.g., num-
ber of changes, recent activity) (Hassan, 2009; Moser et al.,
2008; Bernstien et al., 2007), or previous defects (Kim et al.,

2007; Ostrand et al., 2005; Hassan and Holt, 2005). The
decision is still out on the relative performance of these
approaches. Most of them have been judged were compared
to only few other approaches. In addition, a significant portion

of the evaluations cannot be reproduced since the data used for
their evaluation came from commercial systems and are not
available for public consumption. In some cases, researchers

concluded differently: For example, in the case of size metrics,
Gyimothy et al. reported good results (2005), as opposed to the
findings of Fenton and Ohlsson (2000).

Various types of classifiers have been applied to this task,
including statistical procedures (Basili et al., 1996;
Khoshgoftaar and Seliya, 2004), tree-based methods (Selby

and Porter, 1988; Porter and Selby, 1990; Khoshgoftaar
et al., 2000; Guo et al., 2004; Menzies et al., 2004), neural net-
works (Khoshgoftaar et al., 1995; Khoshgoftaar et al., 1997),
and analogy-based approaches (Khoshgoftaar et al., 2000; El

Emam et al., 2001a,b,c; Khoshgoftaar and Seliya, 2003). How-
ever, as noted in (Myrtveit and Stensrud, 1999; Shepperd and
Kadoda, 2001; Myrtveit et al., 2005) results regarding the

superiority of one method over another or the usefulness of
metric-based classification in general are not always consistent
across different studies. Therefore, ‘‘There is a need to develop

more reliable research procedures before we can have
confidence in the conclusion of comparative studies of soft-
ware prediction models” (Myrtveit et al., 2005).

Various classification algorithms have been applied to a
variety of data sets. Different experimental setup results limit
the ability to understand classifier’s pros and cons. A modeling
technique is good if it is able to perform well on all or at least

most of them. To simplify model comparison, appropriate and
consistent performance measures should be considered.

Evaluating the performance of various approaches is

subject to discussion. While some use Binary classification
(i.e. predicting if a given entity is a buggy or not) others predict
by prioritizing components with most defects. In this paper,

the binary classification technique is used which has been eval-
uated on the basis of the ROC, lift chart and other statistical
parameters.

The datasets used in this work are open source java

projects: PMD, EMMA, Find Bugs, Trove and Dr Java. Open
source projects are different from Industrial projects. Open
source software, is preferred for research as results of these

can be compared and repetition of validation can be per-
formed. Open source projects foster more creativity and have
fewer defects as defects are found and fixed rapidly. (Paulson

et al., 2004).
In this paper, the six well-known classification algorithms

have been used Classifiers selected are Random Forest, Naive

Bayes, Bagging, J48, logistic regression and IB1. These six
classifiers have been chosen for the current study as previous
studies indicate that these classifiers provide better than aver-
age performance in software fault prediction (Menzies et al.,

2007a,b; Jiang et al., 2008). Many studies have used insuffi-
cient performance metrics which do not show enough level
of details for future comparison. Therefore, the objectives of

this paper include:

1. To compare models for fault prediction on open source

software on the basis of
(i) Performance measures including accuracy, sensitiv-

ity, specificity, Precision, G-mean, F-measure,

J_coefficient.
(ii) Graphical methods which include ROC curve,

Precision Recall curve, Cost curves and Lift charts.
(iii) Non parametric Freidman test followed by the post

hoc Nimenyi test.

2. To compare the results of open source software projects

with industrial data sets.

The paper is organized as follows: Section 2 presents the

overview of Related Work. Section 3 describes the Research
methodology along with datasets and metrics used for the clas-
sifier selection. Section 4 represents the model evaluation tech-

niques, which includes comparison of numerical performance
indices, Graphical evaluation techniques and statistical test
performed. Section 5 consists of the analysis performed on
each of the data sets taken in this work. Section 6 discusses

the guidelines for selecting the best model followed by conclu-
sions in section 7.

2. Related work

Basili et al. (1996) found that several of the (Chidamber and
Kemerer, 1994) metrics were associated with fault proneness

based on a study of eight medium-sized systems, developed
by students.

Tang et al. (1999) analysed (Chidamber and Kemerer, 1994)

OO metrics suite on three industrial applications developed in
C++. They found none of the metrics examined to be signif-
icant except RFC and WMC.

Briand et al. (2000) have extracted 49 metrics to identify a
suitable model for predicting fault proneness of classes. The
system under investigation was a medium sized C++ soft-
ware system developed by undergraduate/graduate students.

There were eight systems under study, consisting a total of
180 classes. They used univariate and multivariate analyses
to find the individual and combined impact of OO metrics

and fault proneness. The results showed all metrics except
NOC (which was found related to fault proneness in an inverse
manner) to be significant predictors of fault proneness.

El Emam et al., 2001a,b,c examined a large telecommunica-
tion application developed in C++ and found that class size
i.e. SLOC has a confused effect of most OO metrics on faults.

Another study by Briand and Wust (2001) used a commer-

cial system consisting of 83 classes. They found the DIT metric
related to fault proneness in an inverse manner and NOC met-
ric to be an insignificant predictor of fault proneness.

Yu et al. (2002) choose eight metrics and they examined the
relationship between these metrics and the fault proneness.
The subject system was the client side of a large network

service management system developed by three professional
software engineers. It was written in Java, and consisted of

2 A. Kaur, I. Kaur

Please cite this article in press as: Kaur, A., Kaur, I. An empirical evaluation of classification algorithms for fault prediction in open source projects. Journal of King
Saud University – Computer and Information Sciences (2016), http://dx.doi.org/10.1016/j.jksuci.2016.04.002

http://dx.doi.org/10.1016/j.jksuci.2016.04.002


Download English Version:

https://daneshyari.com/en/article/6899071

Download Persian Version:

https://daneshyari.com/article/6899071

Daneshyari.com

https://daneshyari.com/en/article/6899071
https://daneshyari.com/article/6899071
https://daneshyari.com

