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A B S T R A C T

Fairness measures for queues were introduced for measuring the individual satisfaction of human customers with
respect to the waiting experience. The measure which performs best in some sense is the expected discrimination
frequency (DF). In contrast to competing fairness measures, up to now, the DF has not been thoroughly analysed
for multi-server systems. In particular, there are no results concerning the question whether or not in terms of the
DF, combined queues are fairer than separate queues. In this note, we prove that under Markovian assumptions,
combined queues are fairer and, furthermore, that this statement does not remain true for general queueing
systems.

1. Introduction

Traditionally, the system performance of queueing systems is mea-
sured by characteristics such as waiting times, throughput, ... In recent
years, fairness measures have been paid attention to. Considering
fairness in queues has various reasons, and therefore, various kinds of
fairness measures have been introduced.

In computer applications, it is a quite natural approach to consider
the proportion of the response time of a job of size x to its size x. This
quotient is referred to as the slowdown. For a queue with stochastic
arrival process and stochastic service times, by considering stationary
behaviour and taking the expectation, the (un)fairness of scheduling
disciplines can be classified [1,2]. It turns out that the disciplines PS
(processor sharing) and preemptive LCFS (last come, first served) can
be regarded as some kind of fair with respect to the expected slowdown.

In many applications of queueing theory, human customers are in-
volved (for example, supermarkets, waiting rooms at doctor’s offices,
check-in areas at airports, ...). Whereas slowdown-based considerations
intend to find an abstract classification of fairness, for systems with
human customers, psychological aspects become important: Human
customers will judge the system by means of the ’perceived fairness’.
Based on their satisfaction with their waiting experience, they will
decide whether or not to revisit the facility providing the waiting
system in the future (if they have a choice). Usually, human customers
will not judge preemptive LCFS as a fair scheduling discipline, and
hence, the slowdown-based classification of (un)fairness cannot be
applied in this context.

Pychological studies [3] revealed that human customers perceive
’unfairness’ if they are overtaken by other customers or if customers
with a larger job size are allowed to leave the system earlier. Based on
these findings, principles for measuring perceived fairness have been
established [4]: For single-server queues, fairness measures should
fulfill a seniority preference principle and a service-requirement preference
principle. In their strong version, tests for these principles require that

• if two jobs have the same service requirement, the job which arrived
earlier should be completed first,

• if two jobs arrive at the same time, the job with smaller service
requirement should be completed first.

In both cases, interchanging the order of service of the two jobs
under consideration should lead to a lower fairness/ higher unfairness.
In order to analyse perceived fairness, order fairness [5], a slowdown-
based measure [6], the measure RAQFM (resource allocation queueing
fairness measure) [7] and the discrimination frequency (DF) [8] have
been introduced, further analysis can be found in [9–13]. In some way,
the DF performs best with respect to the principles established in [4],
since it is the only measure introduced so far which satisfies the strong
tests both for the seniority principle and the service requirement prin-
ciple.

For multi-server systems, there is psychological evidence that
human customers generally judge single-queue systems fairer than
multi-queue systems, see [3]. A measure being appropriate for evalu-
ating the fairness of multi-server and multi-queue systems should
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reflect this judgement. For the RAQFM, an analysis has been performed
in [10], yielding that for G/D/k and M/M/2 models, the single-queue is
fairer than the multi-queue. However, it is shown that this result does
not hold for general G/G/k queues. The main goal of this paper is to
provide a similar analysis for the DF in the case of simple Markovian
systems. We will focus on the FCFS discipline, but nevertheless, our
results can be interpreted as a starting point for a future investigation of
the impact of the scheduling discipline on the discrimination frequency
in multi-server systems.

The structure will be as follows: In Section 2, we will describe the
considered single-queue and multi-queue system, and restate the pre-
cise definition of the discrimination frequency. In Section 3, we will
derive the expected DF for the single-queue system, and in Section 4, we
will determine a lower bound for the expected discrimination frequency
in the multi-queue system and prove that indeed, in terms of the DF, the
single-queue system is fairer than the multi-queue system. In Section 5,
we will present an example that for general (non-Markovian) systems
this statement does not remain true. In Section 6, we will summarize
our results, and we will outline possible directions of further research.

2. Basic terms and models under consideration

In this paper, we aim for comparing the expected discrimination
frequency for an M/M/2-model and two M/M/1 models with separate
queues. We briefly present both models and the precise definition of the
discrimination frequency.

2.1. The M/M/2 model

Customers arrive according to a Poisson process with intensity λ.
There are two identical servers, and the service times are independently
and identically Exp(μ)-distributed. Furthermore, there is no restriction
of the number of waiting customers, and the scheduling discipline is
FCFS (first come, first served). Due to these modelling assumptions, the
process (Nt)t≥ 0 of the number Nt of customers in the system (waiting in
the queue or being served) is a continuous-time Markov chain (CTMC).
In case = <ρ 1,λ

μ2 the system is stable, and in the long-run, it will
behave stationarily, that is, for any = …k 0, 1, 2, , we have
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Due to the PASTA property of the arrival process [15, Theorem VII.6.7],
in the long-run, arriving customers will ’see’ the stationary distribution,
that is, with probability πk, an arriving customer will find k other
customers in the system. Note that for the stationary number N of
customers in the system, we have � = ∑ =
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2.2. The multi-queue model

In order to model two separate queues, we consider two parallel M/
M/1 models. Customers still arrive according to a Poisson process with
parameter λ. Each arriving customer will join the first system with
probability ,1

2 and the second one with probability 1
2
. Hence, the arrival

process for each of both systems is a Poisson process with intensity λ
2
.

Both systems have one server, and the service times are independently
and identically Exp(μ) distributed. Still, we assume infinite waiting
capacity and FCFS as scheduling discipline. Let ≥N N( , )t t t

(1) (2)
0 be the

process of the number of customers in the first and in the second
system, respectively. Due to the modelling assumptions, this process is
again a CTMC, and furthermore, ≥N( )t t

(1)
0 and ≥N( )t t

(2)
0 are independent,

and both are CTMCs. For =ρ ,λ
μ2 we have stability, and

� �= = = = = …
→∞ →∞

N k N k π klim ( ) lim ( ) , 0, 1, 2, ,
t

t
t

t k
(1) (2)

where = =
∞π π( )k k 0 is the stationary distribution. Again, the exact shape

of π is well-known [14, Section 3.2], we have = −π ρ ρ(1 )k
k for all

= …k 0, 1, 2, . As for the M/M/2 model, we have the PASTA property,
that is, in the long-run, with probability πk · πℓ an arriving customer sees
k other customer in the first system, and ℓ other customers in the second
system.

Although we will compare the fairness (measured by the dis-
crimination frequency), we briefly recapitulate that traditional perfor-
mance measure favor the combined queue over the separate queue: Let
N be the total stationary number of customers in the system. Then

= +N N N(1) (2) and � =
−

N[ ] ,ρ
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2
1 and this number is larger (by factor

+ ρ1 ) than the corresponding expected number of customers in the M/
M/2 queue. Since Little’s formula guarantees that the expected response
(or sojourn) time of any ’black box’ can be determined by � ,N

λ
[ ] this

result carries over to response times.
Note that there are different ways to ’choose’ the queue an arriving

customer joins. Here, we consider the ’coin toss’. A natural alternative is
joining the shorter queue (if there is one). In this case, the stationary
numbers of customers in the systems depend on each other. We leave
this topic open for future research.

2.3. The discrimination frequency

The discrimination frequency was introduced in [8]. The intuitive
concept behind it is to count the discriminating events a customer
suffers from. These are large jobs, that are jobs which have a larger
remaining service requirement at our job’s time of arrival, but leave the
system earlier, and overtakes, that are jobs which arrive after and leave
before our marked job. Formally, in [8], the DF was defined as follows:

Definition 2.1. Let ai, di, si be the arrival time, the departure time, and
the service time of job Ji. Furthermore, let ′s t( )j be the residual service
time of Jj at time t (if Jj did not enter the system at time t, we have
′ =s t s( )j j). Then the amount OV(i) of overtakes job Ji suffers from is

= ≥ ∧ ≤OV i j a a d d( ): { : ( )} .j i j i

The amount LJ(i) of large jobs that a job Ji suffers from is

= ≥ > ∧ ′ ≥LJ i j d d a s a s( ): { : ( ( ) } .i j i j i i

The discrimination frequency of job Ji is

= +DF i OV i LJ i( ) ( ) ( ).

The discrimination frequency of a system in steady state is the
discrimination frequency of a stationary customer.

For stationary systems, the distribution of OV(i), LJ(i), and DF(i) is
identical for all customers i. We will refer to the number of overtakes,
the number of large jobs, and the discrimination frequency of a ran-
domly chosen customer as OV, LJ, and DF respectively. Hence, we will
consider a ’tagged customer’ who sees the stationary distribution of
number of customers in the instant of his arrival, and we will pursue his
way through the system, and count the number of overtakes and large
jobs he suffers from.

3. The expected discrimination frequency for the combined queue

In order to compute � DF[ ], we determine � LJ[ ] and � OV[ ]. Note
that under FCFS, large jobs are only caused by customers which have
entered the system before our tagged customer, and overtakes are only
caused by customers which will enter the system after our tagged
customer. Precisely, we will prove the following result in the next
subsections.

Theorem 3.1. For an M/M/2 model with a combined FCFS, the expected
number of large jobs is � =

− +
LJ[ ] ,ρ

ρ ρ(1 )(1 )

2
the expected number of

overtakes in the M/M/2-system with a combined FCFS queue is
� =

+
OV[ ] ,ρ

ρ1 and the expected discrimination frequency is
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