
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 125 (2018) 740–746

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 6th International Conference on Smart Computing and Communications
10.1016/j.procs.2017.12.095

10.1016/j.procs.2017.12.095 1877-0509

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 6th International Conference on Smart Computing and
Communications.

6th International Conference on Smart Computing and Communications, ICSCC 2017, 7-8
December 2017, Kurukshetra, India

Improving Cohesion of a Software System by Performing Usage
Pattern Based Clustering

Amit Ratheea*, Jitender Kumar Chhabrab
a,bDepartment of Computer Engineering, National Institute of Technology, Kurukshetra- 136119

Abstract

Increasing the software design quality is a key research challenge in object-oriented software development system. Cohesion is
one of the key spect that helps to evaluate the quality and modularity of a software system at the design level. It helps to create
software components that are directly reusable to the industry because of their less dependence on other components. In this
paper, a new cohesion metric for object-oriented software, named as Usage Pattern Based Cohesion (UPBC), is proposed which
is computed at the module level. This paper considers class as a module initially and subsequently group of classes (i.e. a
package) is considered as a module with an aim of improving overall cohesion. This metric utilizes the Frequent Usage Patterns
(FUP) extracted from different member functions interactions to capture the cohesiveness of the module. Further, the measured
cohesion value is used to perform clustering of modules in order to increase cohesion and decrease coupling among modules
simultaneously. The clustering is performed by using a newly proposed clustering algorithm called FUPClust (Frequent Usage
Pattern based Clustering) based on FUP interactions among modules. The proposed approach is applied to two Java software
systems and the results obtained show a significant improvement in the cohesiveness of the software system.

© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 6th International Conference on Smart Computing and
Communications.

Keywords: : Software Engineering; Clustering; Frequent Usage Patterns (FUP); Cohesion.

1. Introduction

With increasing growth of software product use in industry and our day to day life [14], the software development
process has gained popularity among researchers and other practitioners [16] [20]. Since software development is a

* Corresponding author. Tel.: +91-999-177-1143
 E-mail address: aamit1983_rathee@rediffmail.com, bjitenderchhabra@gmail.com

2 Amit Rathee, Jitender Kumar Chhabra/ Procedia Computer Science 00 (2018) 000–000

human-centric activity, so, it is prone to undesirable performance and design defects [10]. So, software development
process needs to be continuously assessed and evolved over time in order to fulfill customer’s requirements and
remove other identified defects [10]. This helps in improving the software design and hence the quality of a software
system.

Cohesion and Coupling being the two important metrics that denotes the quality at structural design level of a
software system [15]. The term cohesion is originated from structural design [21] and it refers to how much the
various elements of a given modules are related to each other. It is an important indicator of software design quality
and the modularity. A higher cohesion value of a module indicates that the given module is providing near single
functionality, whereas, a lower value hinders the reuse of a software module. So, a module with higher cohesion is
always desirable [7]. Numerous cohesion metrics have been proposed already [3] [5] [6] [9] [11] [17]. These
proposed metrics are based on measuring the method to method interaction and member variable references made by
them. These metrics do not consider member variable references to outside modules and member variable references
made due to nested member function calls, which in our idea is a research gap in accurately measuring cohesion of a
module.

In this paper, an approach to measure cohesion at module level is proposed. The proposed metric, Usage Pattern
Based Cohesion (UPBC), measures the usage pattern of member variables among different member functions of a
module. Later, based on the measured cohesion metric value, different modules are clustered by using the proposed
clustering algorithm called FUP based Clustering (FUPClust). The research contributions of this paper include:

1. To propose a cohesion metric UPBC, that measures the cohesion at module level by utilizing the FUP’s
identified for the given module. The FUP measures the extent to which a given module references the
member variables inside and outside to it. The FUP is calculated at method level and overall FUP for the
module is calculated based on FUP calculated for the member functions defined inside the module.

2. To propose a clustering algorithm FUPClust that regroup the modules by doing clustering based on the
measured cohesion values of different modules.

The rest of this paper is structured as follows: Section 2 gives description regarding the literature survey, section
3 gives detailed description of the proposed. Section 4 describes the experimentation and results and finally section 5
describes the concluding remarks and future works.

2. Literature Survey

As the popularity of object-oriented software development is increasing, there is a greater need for software
design metrics which are capable of measuring the software design quality. Cohesion is one such key design
principle in software engineering and in this direction, numerous cohesion metrics have been already proposed [3]
[5] [6] [9] [11] [17]. Yourdon et al. define the coupling for an object-oriented software as the degree to which
different modules are interdependent on each other [22]. Briand et al. [7] propose a structural based unified
framework to measure cohesion in an object-oriented software system and proposed a cohesion metric Coh that
counts attribute references and sharing among the methods of a class. Bansiya [2] defines cohesion in terms of
coupling by proposing a coupling metric Direct Class Coupling (DCC) which counts the total number of classes that
are directly related to a given class. Chidamber et al. [8] propose a metric suite that also measures cohesion as
LCOM (Lack of Cohesion among Methods) metric which measures the sharing of member variables among different
pairs of methods of a class. Li and Henry [18] proposes a cohesion metric LCOM3 by extending the work of [8] and
representing the system as an undirected graph. They represented each class method as a node in the graph and
member variables sharing as an edge in the graph. They measured class cohesion as the total number of strongly
connected components in MDG (Module Dependency Graph). Hitz and Montazeri [13] proposes another cohesion
metric LCOM4 by representing the system as a graph in which the nodes represents the methods and edge between
any vertices denote that they are accessing the same attribute. Henderson et al. [12] give the latest proposed metric
LCOM5 in LCOM metric series. This metric gives cohesion value of zero (0) if methods use only member variables
of the class and it gives a value of one (1) if every method uses only one member variable of the class. Bieman and
Kang’s [4] also proposes two sets of cohesion metrics known as tight class cohesion (TCC) and loose class cohesion
(LCC). They calculated TCC as the ratio of a total number of pairs of member functions with no sharing of member
variables to a total number of pair of direct member functions which share at least one member variable among

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.12.095&domain=pdf

	 Amit Rathee et al. / Procedia Computer Science 125 (2018) 740–746� 741

Available online at www.sciencedirect.com

ScienceDirect

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

1877-0509 © 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 6th International Conference on Smart Computing and
Communications.

6th International Conference on Smart Computing and Communications, ICSCC 2017, 7-8
December 2017, Kurukshetra, India

Improving Cohesion of a Software System by Performing Usage
Pattern Based Clustering

Amit Ratheea*, Jitender Kumar Chhabrab
a,bDepartment of Computer Engineering, National Institute of Technology, Kurukshetra- 136119

Abstract

Increasing the software design quality is a key research challenge in object-oriented software development system. Cohesion is
one of the key spect that helps to evaluate the quality and modularity of a software system at the design level. It helps to create
software components that are directly reusable to the industry because of their less dependence on other components. In this
paper, a new cohesion metric for object-oriented software, named as Usage Pattern Based Cohesion (UPBC), is proposed which
is computed at the module level. This paper considers class as a module initially and subsequently group of classes (i.e. a
package) is considered as a module with an aim of improving overall cohesion. This metric utilizes the Frequent Usage Patterns
(FUP) extracted from different member functions interactions to capture the cohesiveness of the module. Further, the measured
cohesion value is used to perform clustering of modules in order to increase cohesion and decrease coupling among modules
simultaneously. The clustering is performed by using a newly proposed clustering algorithm called FUPClust (Frequent Usage
Pattern based Clustering) based on FUP interactions among modules. The proposed approach is applied to two Java software
systems and the results obtained show a significant improvement in the cohesiveness of the software system.

© 2018 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 6th International Conference on Smart Computing and
Communications.

Keywords: : Software Engineering; Clustering; Frequent Usage Patterns (FUP); Cohesion.

1. Introduction

With increasing growth of software product use in industry and our day to day life [14], the software development
process has gained popularity among researchers and other practitioners [16] [20]. Since software development is a

* Corresponding author. Tel.: +91-999-177-1143
 E-mail address: aamit1983_rathee@rediffmail.com, bjitenderchhabra@gmail.com

2 Amit Rathee, Jitender Kumar Chhabra/ Procedia Computer Science 00 (2018) 000–000

human-centric activity, so, it is prone to undesirable performance and design defects [10]. So, software development
process needs to be continuously assessed and evolved over time in order to fulfill customer’s requirements and
remove other identified defects [10]. This helps in improving the software design and hence the quality of a software
system.

Cohesion and Coupling being the two important metrics that denotes the quality at structural design level of a
software system [15]. The term cohesion is originated from structural design [21] and it refers to how much the
various elements of a given modules are related to each other. It is an important indicator of software design quality
and the modularity. A higher cohesion value of a module indicates that the given module is providing near single
functionality, whereas, a lower value hinders the reuse of a software module. So, a module with higher cohesion is
always desirable [7]. Numerous cohesion metrics have been proposed already [3] [5] [6] [9] [11] [17]. These
proposed metrics are based on measuring the method to method interaction and member variable references made by
them. These metrics do not consider member variable references to outside modules and member variable references
made due to nested member function calls, which in our idea is a research gap in accurately measuring cohesion of a
module.

In this paper, an approach to measure cohesion at module level is proposed. The proposed metric, Usage Pattern
Based Cohesion (UPBC), measures the usage pattern of member variables among different member functions of a
module. Later, based on the measured cohesion metric value, different modules are clustered by using the proposed
clustering algorithm called FUP based Clustering (FUPClust). The research contributions of this paper include:

1. To propose a cohesion metric UPBC, that measures the cohesion at module level by utilizing the FUP’s
identified for the given module. The FUP measures the extent to which a given module references the
member variables inside and outside to it. The FUP is calculated at method level and overall FUP for the
module is calculated based on FUP calculated for the member functions defined inside the module.

2. To propose a clustering algorithm FUPClust that regroup the modules by doing clustering based on the
measured cohesion values of different modules.

The rest of this paper is structured as follows: Section 2 gives description regarding the literature survey, section
3 gives detailed description of the proposed. Section 4 describes the experimentation and results and finally section 5
describes the concluding remarks and future works.

2. Literature Survey

As the popularity of object-oriented software development is increasing, there is a greater need for software
design metrics which are capable of measuring the software design quality. Cohesion is one such key design
principle in software engineering and in this direction, numerous cohesion metrics have been already proposed [3]
[5] [6] [9] [11] [17]. Yourdon et al. define the coupling for an object-oriented software as the degree to which
different modules are interdependent on each other [22]. Briand et al. [7] propose a structural based unified
framework to measure cohesion in an object-oriented software system and proposed a cohesion metric Coh that
counts attribute references and sharing among the methods of a class. Bansiya [2] defines cohesion in terms of
coupling by proposing a coupling metric Direct Class Coupling (DCC) which counts the total number of classes that
are directly related to a given class. Chidamber et al. [8] propose a metric suite that also measures cohesion as
LCOM (Lack of Cohesion among Methods) metric which measures the sharing of member variables among different
pairs of methods of a class. Li and Henry [18] proposes a cohesion metric LCOM3 by extending the work of [8] and
representing the system as an undirected graph. They represented each class method as a node in the graph and
member variables sharing as an edge in the graph. They measured class cohesion as the total number of strongly
connected components in MDG (Module Dependency Graph). Hitz and Montazeri [13] proposes another cohesion
metric LCOM4 by representing the system as a graph in which the nodes represents the methods and edge between
any vertices denote that they are accessing the same attribute. Henderson et al. [12] give the latest proposed metric
LCOM5 in LCOM metric series. This metric gives cohesion value of zero (0) if methods use only member variables
of the class and it gives a value of one (1) if every method uses only one member variable of the class. Bieman and
Kang’s [4] also proposes two sets of cohesion metrics known as tight class cohesion (TCC) and loose class cohesion
(LCC). They calculated TCC as the ratio of a total number of pairs of member functions with no sharing of member
variables to a total number of pair of direct member functions which share at least one member variable among

Download English Version:

https://daneshyari.com/en/article/6900764

Download Persian Version:

https://daneshyari.com/article/6900764

Daneshyari.com

https://daneshyari.com/en/article/6900764
https://daneshyari.com/article/6900764
https://daneshyari.com

