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a b s t r a c t 

The proliferation of sensors is generating rapidly increasing quantities of data like never 

before. These extensive amounts of data can provide useful information for more accurate 

state inference of large-scale spatial temporal systems. Sequential Monte Carlo methods 

are used to assimilate the observed data from sensors to improve the state estimation of 

large-scale spatial temporal systems, which highly rely on the available real time observa- 

tion data. In many scenarios, the real time data are limited in space and time. Therefore, 

it is important to effectively obtain critical sensor data in real time and then dynamically 

feed them into the running model. In this paper, we propose the on-demand data assim- 

ilation method for large-scale spatial temporal systems, in which we quantify the spatial 

states using run-time state quantification methods and decide if we need to trigger data 

assimilation on demand and obtain more relevant real time data when the state uncer- 

tainty is high. The effectiveness of the developed framework is evaluated based on large- 

scale wildfire spread simulations. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The proliferation of sensors is producing rapidly increasing data in quantity and variety like never before. The extensive 

amount of data on one hand provide useful information for spatial temporal systems, and on the other hand pose challenges 

on effectively and efficiently utilizing the information for better state inferences to support real time decision-making. Con- 

sidering the example of a wildfire spread and firefighting scenario, when a wildfire occurs, various types of real time data, 

including data from satellite systems, multi-spectrum infrared airborne images collected by unmanned or remotely con- 

trolled aerial vehicles and the temperature data collected from ground fire sensors will be provided to wildfire managers. 

Therefore, how to utilize these data and integrate them into simulation models to accurately estimate the evolving fire 

fronts and the fireline intensity will help the wildfire managers make decisions in wildfire suppression. Another example 

is collaborative target inference and target tracking in a battlefield. When targets appear, streams of sensor data collected 

from disparate sensors are transferred to the command center. Effective methods to assimilate these sensor data in space 

and time for real time target inference are crucial for system operators and commanders to decide the actions to take. 

Both of the above systems are spatial temporal dynamic systems, exhibiting dynamic behaviors in both space and time. 

Many applications fall in the above spatial temporal systems, such as target tracking, wildfire spread, nuclear radiation dis- 

persion, and chemical/biological release spread. They are inherently difficult to study due to reasons such as involving large 
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spatial areas, the stochastic process of system dynamics, and complex interactions among many different factors, e.g., vegeta- 

tion, terrain, and weather in a wildfire. Another common feature of the above systems is the need of accurate state inference 

(or state estimation) from spatial temporal sensor data. To support state inference, dynamic models that capture systems’ 

behaviors are developed. For example, in collaborative target inference and target tracking, models of targets’ motions are 

developed. Real time sensor data are then assimilated into these models to infer targets’ states, e.g., their positions and ve- 

locities (see [1–3] for examples). Similarly, in the wildfire spread example, simulation models are developed to predict the 

fire spread behavior over time. Real time sensor data are assimilated into the simulation models to estimate the dynamically 

evolving fire fronts (see [4–7] for examples). By infusing spatial temporal information and assimilating real time sensor data 

into dynamic models, we can better estimate the current system state and thus provide more accurate behavior analysis 

and prediction. Furthermore, the real time sensor data also carry “feedback” information for us to calibrate the model pa- 

rameters in order to better match the model outputs with observations. These capabilities are very useful for supporting 

real time system analysis and decision-making. 

To support data assimilation of spatial temporal data into dynamic models, novel approaches are needed to effectively 

and efficiently incorporate the real time data. Many of such approaches are designed based on probabilistic methods because 

spatial temporal systems are often stochastic and dynamic, such as Kalman filter [8] and sequential Monte Carlo (SMC) 

methods [9] . SMC methods are sample-based, utilizing Bayesian inference and stochastic sampling to recursively estimate 

the state inference of dynamic systems under study from the given observations. SMC methods use a large number of 

random samples and their associated weights to represent the sequence of probability distributions of interest. With the 

arrival of observation data, the weights of samples are updated. SMC methods are able to represent any probability densities 

and have no restrictions on the properties of the system model. Therefore, SMC methods are effective in supporting data 

assimilation of large-scale spatial temporal systems with sophisticated models and complex non-linear, non-Gaussian, and 

unsteady behaviors [5,6] . In addition, SMC methods are executed in a recursive manner that the state inference of systems 

is updated when new observations arrive. This pattern well matches the feature of data assimilation of dynamic systems 

that the availability of new real time data drives the updates of the states of the systems. 

Over the past several decades, many research effort s of applying SMC methods to large-scale spatial temporal systems 

focus on their large state space and the required intensive computational costs [10–12] . With the proliferate types of sensor 

data available, they can be used to improve the accuracy of data assimilation using SMC methods. In the scenario of wildfire 

spread, the primary real time data are the temperatures from the deployed ground fire sensors. However, in some cases, the 

wildfires spread to the field without fire sensors, or the quality of the collected temperatures is low due to various reasons, 

such as a low number of sensors available and malfunctioned sensors. This decreases the accuracy of the data assimilation 

results. To improve the predicted results, additional types of available data can be used, such as satellite image data and 

multi-spectrum infrared airborne photographs from unmanned or remotely controlled aerial vehicles. The availability and 

heterogeneity of these real time data ask for methods that can integrate multiple types of spatial temporal data to support 

data assimilation using SMC methods. In this paper, we develop the on-demand data assimilation framework of large-scale 

spatial temporal systems using SMC methods, which obtains multiple types of real time data and dynamically feeds them 

into the simulation model to improve the state inference. 

The rest of the paper is organized as follows. Section 2 introduces the related work in SMC methods and their applica- 

tions. Section 3 describes the foundations of SMC methods. Section 4 presents the on-demand data assimilation framework 

using SMC methods. Section 5 illustrates data assimilation of wildfire spread simulation using SMC methods. Section 6 pro- 

vides the experimental design and results. Section 7 concludes the paper and points out the future research directions. 

2. Related work 

Data assimilation is an analysis technique used in numerous application domains, such as meteorology and oceanog- 

raphy, weather forecasting, geosciences, and environmental systems. It aims to obtain the best estimates of states of dy- 

namic systems by infusing the observational data into the system models. Many different methods have been developed 

to support data assimilation, among which the variational approach and the probabilistic approaches are widely used. The 

variational approach minimizes the cost functions containing observations, and it eliminates additional initialization steps. 

Three-dimensional variational analysis (3D-VAR) and four-dimensional variational assimilation (4D-VAR) are two of the pop- 

ular variational approaches. 3D-VAR achieves data assimilation by iteratively minimizing a predefined cost function and 

penalizing the differences between the analysis and observations according to their estimated errors. 4D-VAR generalizes 

3D-VAR by handling the observations distributed in time. It uses the same cost function, but includes a forecast model that 

compares the model state and the observations at different time steps. Their related applications can be found in many lit- 

eratures, such as [13] and [14] . The probabilistic approach mainly includes filtering methods and smoothing methods, such 

as Kalman filter and particle filters. Kalman filter [15] estimates states of a system represented by a linear state space model 

with the given observations. For applications with non-linear behaviors, Kalman filter needs to be extended [16] . Its broad 

applications can be found in [17–20] . 

Another popular probabilistic approach of data assimilation is SMC methods, also called particle filters. SMC methods 

approximate the states of dynamic systems by a set of particles and their associated weights. They can be applied to dy- 

namic systems with non-linear behaviors and have little restrictions on the system’s properties. Therefore, SMC methods 

are popularly adopted in many applications, such as civil engineering, finance, oceanography, smart buildings, weather pre- 
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