
ARTICLE IN PRESS

JID: SIMPAT [m3Gsc; January 10, 2018;1:43]

Simulation Modelling Practice and Theory 0 0 0 (2018) 1–14

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

Multi-level agent-based simulations: Four design patterns

Philippe Mathieu

a , Gildas Morvan

b , ∗, Sebastien Picault a , c

a Univ. Lille, CNRS, Centrale Lille, UMR 9189 – CRIStAL (équipe SMAC) Centre de Recherche en Informatique Signal et Automatique de

Lille, Lille F-590 0 0, France
b Univ. Artois, EA 3926, Laboratoire de Génie Informatique et d’Automatique de l’Artois (LGI2A), Béthune, France
c BIOEPAR, INRA, Oniris, La Chantrerie, Nantes 44307, France

a r t i c l e i n f o

Article history:

Available online xxx

Keywords:

Agent-based simulation

Multi-level

Design patterns

Architecture

a b s t r a c t

This paper describes four design patterns that aim at systematizing and simplifying the

modelling and the implementation of multi-level agent-based simulations. Such simula-

tions are meant to handle entities belonging to different, yet coupled, abstractions or or-

ganization levels. The patterns we propose are based on minimal typical situations drawn

from the literature. For each pattern, we present use cases, associated data structures and

algorithms. For genericity purposes, these patterns rely on a unified description of the ca-

pabilities for action and change of the agents. Thus, we propose a precise conceptual and

operational framework for the designers of multi-level simulations.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Multi-Agent Systems (MAS) are intrinsically built as two-level systems: the “microscopic” level, where the agents are

endowed with a specific behaviour, and the “macroscopic” level, where the system is seen as a whole. But often this latter

level remains implicit in the sense that it is “outside” the agents (heterogeneous to them): it is of a different nature (set

of specifications or issues to be resolved before the design of the MAS, set of descriptors aggregated during or after the

functioning of the MAS), and when it exerts a feedback on the behaviour of the agents, it is often only in an implicit way.

Making the link between the microscopic and macroscopic levels explicit remains an open question [1] .

Not only do we not have at the present time any general method to answer it, but the scientific questions underlying

this issue are also still rather widely ignored. However, in the current period, the use of MAS is changing and so are the cor-

responding research subjects. From disciplines such as ethology and sociology, which required relatively small numbers of

agents (up to hundreds or thousands), new applications of MAS are now moving to large-scale systems (ecology, molecular

biology or cellular, social networks, financial markets, transportation, etc.) where classical approaches encounter many lim-

itations. Issues related to the organization of systems, and specifically their organization into subsystems, take precedence

over those for individual decision architectures.

Those new needs are responsible for the development of Multi-Level Agent-Based Simulations (MLABS), i.e. MAS which

try to provide an explicit representation of the macroscopic level and to each relevant intermediary level, possibly as new

agents. This can be done through many forms to address very diverse objectives, such as: introducing in the model ab-

straction levels which are “useful” or “relevant” to experts in the field [2] ; dynamically adaptating the level of detail of the

simulation, for instance to save computation time when possible [3] ; coupling heterogeneous models to simulate processes

∗ Corresponding author.

E-mail addresses: philippe.mathieu@univ-lille.fr (P. Mathieu), gildas.morvan@univ-artois.fr (G. Morvan), sebastien.picault@univ-lille.fr (S. Picault).

https://doi.org/10.1016/j.simpat.2017.12.015

1569-190X/© 2018 Elsevier B.V. All rights reserved.

Please cite this article as: P. Mathieu et al., Multi-level agent-based simulations: Four design patterns, Simulation Modelling

Practice and Theory (2018), https://doi.org/10.1016/j.simpat.2017.12.015

https://doi.org/10.1016/j.simpat.2017.12.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/simpat
mailto:philippe.mathieu@univ-lille.fr
mailto:gildas.morvan@univ-artois.fr
mailto:sebastien.picault@univ-lille.fr
https://doi.org/10.1016/j.simpat.2017.12.015
https://doi.org/10.1016/j.simpat.2017.12.015

2 P. Mathieu et al. / Simulation Modelling Practice and Theory 0 0 0 (2018) 1–14

ARTICLE IN PRESS

JID: SIMPAT [m3Gsc; January 10, 2018;1:43]

Fig. 1. Elementary structure of an agent and its relationship to the environment.

at different scales [4–6] ; or even detecting interesting collective behaviours or emerging spatial structures, either with, or

without, reification (agentification) [7] .

As observed by [8] , there is currently no precise or unambiguous characterization of what is covered by the “multi-level”

concept, either in terms of objectives, or system structure, or agent architecture, or algorithms. At best, recurrent problems

can be identified, for which many implementations are proposed.

Our goal here is to show that multi-level agent-based simulations involve the combination of elementary situations,

which can be characterized by a small number of general criteria, and for which recurrent implementation solutions can be

proposed. In other words, we seek to identify and describe Design Patterns for multi-level agent-based simulations, in the

same sense as in Software Engineering [9] .

This paper is organized as follows: in the next section, we present several operational prerequisites on which we rely,

and describe our method for classifying concrete problems and identifying patterns. Then, we provide a detailed description

of each pattern (name, features, algorithms, use cases) and show how they can be composed in a single simulation. Finally,

we discuss methodological, theoretical or practical issues before concluding.

2. Proposed approach

The approach we advocate here consists in characterizing recurrent situations observed in practice in MLABS, in order to

build a typology, with the purpose of determining which answers are the most appropriate for each kind of needs. To do

so, it is necessary to settle in advance some minimal assumptions regarding our conceptual and operational tools, namely

agents and simulation engines. Any multi-agent simulation that supports these criteria should be able to implement the

patterns we propose here without any other prerequisites.

2.1. Operational requirements

What we present here is not intended to provide a final definition of an agent in a MAS, or even just in a multi-agent

simulation. Instead, our purpose is to resort to the parsimony principle (Occam’s razor) in order to identify, within multi-

agent simulations, a set of features which can be a common foundation for building consistent design patterns in this field.

Then, in what follows, an agent is considered as an entity situated in an environment, with a state (not directly reachable)

affected by its actions and the actions of other agents, and which furthermore may be subject to a dynamic evolution of

its own (thereafter s t (a) denotes the state of agent a at time t). An agent has several primitives, reflecting its elementary

(atomic) capabilities of perception and action. To trigger appropriate changes in its state over time, the agent provides at

most one public entry point (method, procedure, function...), which we call update by convention. Similarly, to trigger

action selection, i.e. the choice of primitive actions as a response to its state and its perceptions, the agent provides at most

one public entry point which we call decide . The aim of this entry point is to perform the classical perception-decision-

action sequence. By “public entry point”, we refer to platform-dependent software control mechanisms, which cannot in

general be reduced to language-dependent features such as the well-known public vs. private Java keywords.

We also focus on situations, quite prevalent even in the MLABS literature, where agents belong to only one environment

(Fig. 1), without any further assumption regarding the nature of that environment or its implementation (which can also

follow design patterns, as shown in [10]). Alternative situations, allowing agents to belong to several environments at the

same time, are addressed in e.g. [11–13] .

The action primitives of the agents are not intended to be executed directly by the simulation engine, but their execution

must occur during the interactions between agents. Thus, we can assume that their access is only allowed for the effective

realization of the behaviours of agents.

The autonomy of an agent essentially lies in the fact that the only public entry points are update and decide . This

ensures that there is no other way to manipulate the state of the agent, or distort its perceptions, or cause its actions.

In addition, these two entry points should be managed by a scheduler which is the only authority to determine when the

Please cite this article as: P. Mathieu et al., Multi-level agent-based simulations: Four design patterns, Simulation Modelling

Practice and Theory (2018), https://doi.org/10.1016/j.simpat.2017.12.015

https://doi.org/10.1016/j.simpat.2017.12.015

Download English Version:

https://daneshyari.com/en/article/6902694

Download Persian Version:

https://daneshyari.com/article/6902694

Daneshyari.com

https://daneshyari.com/en/article/6902694
https://daneshyari.com/article/6902694
https://daneshyari.com

