
Simulation Modelling Practice and Theory 82 (2018) 116–131

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

Activity-based DEVS modeling

Abdurrahman Alshareef a , Hessam S. Sarjoughian

a , ∗, Bahram Zarrin

a , b

a Arizona Center for Integrative Modeling & Simulation, School of Computing, Informatics, and Decision Systems Engineering, Arizona

State University, 699 S. Mill Avenue, Tempe, AZ, 85281, United States
b DTU Compute, Technical University of Denmark, Kgs Lyngby 2800, Denmark

a r t i c l e i n f o

Article history:

Received 13 May 2017

Revised 16 November 2017

Accepted 12 December 2017

Keywords:

Activity modeling

Behavioral modeling

GMF

Model Driven Development

DEVS

UML

a b s t r a c t

Use of model-driven approaches has been increasing to significantly benefit the process of

building complex systems. Recently, an approach for specifying model behavior using UML

activities has been devised to support the creation of DEVS models in a disciplined manner

based on the model driven architecture and the UML concepts. In this paper, we further

this work by grounding Activity-based DEVS modeling and developing a fully-fledged mod-

eling engine to demonstrate applicability. We also detail the relevant aspects of the cre-

ated metamodel in terms of modeling and simulation. A significant number of the artifacts

of the UML 2.5 activities and actions, from the vantage point of DEVS behavioral model-

ing, is covered in details. Their semantics are discussed to the extent of time-accurate re-

quirements for simulation. We characterize them in correspondence with the specification

of the atomic model behavior. We demonstrate the approach with simple, yet expressive

DEVS models.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Constructing simulation models, despite from being quite costly and complex, remains indispensable and highly benefi-

cial, especially for systems that do not lend themselves to analytical methods. System dynamics need to be determined in

enough details to sufficiently address its different aspects under study in order to ultimately attain the potential benefit.

The models have to be then realized in certain computational and physical environments in order to enable the simulation

and experimentation thereafter. As system complexity grows, so does the importance of behavioral modeling. There are ex-

isting concepts and techniques where the structure modeling can be handled systematically to account for further system

complexity and growth. However, these techniques fall short with respect to behavioral modeling. Increasingly behavioral

models are becoming large and therefore difficult to understand, formulate, and maintain using conceptual (informal) and

mathematical modeling as well as their implementation in programming languages and evaluations.

The Discrete EVent System specification (DEVS) formalism [1] can effectively serve as a basis for simulation-based design

and formulation of modular, component-based system models. The parallel DEVS formalism, based on time, input, output,

states, and state transition, is widely supported by simulators, DEVS-Suite [2] for example, that have been implemented in

different com puting environments. Simulators need to serve different needs through complementary advanced capabilities

including action-based behavior specification. The input for simulators is mainly models although the simulators significantly

differ in the form by which the models have to be formulated, simulated, and evaluated. This has led to the rise of utilizing

∗ Corresponding author.

E-mail addresses: alshareef@asu.edu (A. Alshareef), sarjoughian@asu.edu , hessam.sarjoughian@asu.edu (H.S. Sarjoughian), baza@dtu.dk (B. Zarrin).

https://doi.org/10.1016/j.simpat.2017.12.009

1569-190X/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.simpat.2017.12.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/simpat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2017.12.009&domain=pdf
mailto:alshareef@asu.edu
mailto:sarjoughian@asu.edu
mailto:hessam.sarjoughian@asu.edu
mailto:baza@dtu.dk
https://doi.org/10.1016/j.simpat.2017.12.009

A. Alshareef et al. / Simulation Modelling Practice and Theory 82 (2018) 116–131 117

the so-called Model-Driven Engineering in simulation especially with respect to the focus on creating platform-independent

models. Models of this nature are less inclined to carry details specific to the execution environments and therefore can be

used and maintained for a wider set of M&S platforms, a key benefit of Model-Driven Architecture (MDA) [3] . The definitions

in this approach have been proven to be consistent with the theory of modeling and simulation in multiple occasions

[4–8] . In fact, it is desirable to have models of this nature in order to allow modelers to be more focused on the problem and

solution specifications in more neutral terms with respect to specific details of simulation frameworks. Behavior specification

is not as simple as structure specification especially when system dynamics require understanding and formulation beyond

conditional state changes and event handling. This fact is accounted for the recent approaches that adopt some of the other

languages and formalisms (e.g., UML state machines) with capabilities that can afford specifying complex behaviors.

While some behavioral languages are adopted for the specification of DEVS atomic models, they significantly differ in

their suitability, complexity, and provided capabilities. In this work, we attempt to dig deep into the activity modeling as

a major modeling approach for the DEVS atomic model and by extension coupled model behavioral specifications. The ap-

proach is gaining more attention given its promising prospects for enhancing system modeling in multiple domains. Activity

metamodel has also undergone major advances in the recent decade especially the release of the UML 2.0 [9] and the foun-

dational subset of UML (fUML) [10] . The idea essentially is to adopt the UML activities for the behavioral specification of

the DEVS atomic model according to the state of the art standards. Activities provide some unique capabilities with respect

to other behavioral diagrams. We want to leverage them in a way that shortens the distance between the concrete mod-

els and their mathematical abstractions. The handling of actions in the activities gives a premise to overcome some of the

behavioral modeling difficulties in general and the ones encountered in the other behavioral approaches (e.g., finite-state

machines). A richer specification can be achieved when modelers consider a variety of behavioral specifications that better

serve their needs.

We will discuss some necessary background in this subject. We will also compare and contrast our contribution with

some of the existing approaches toward meeting the need for expressive behavioral modeling. We elaborate on the selected

approach based on previous work [11] in conjunction with further discussion and alignment with the DEVS formalism. A

modeling engine is created to manifest that at the implementation level alongside with processor with queue model as an

exemplar.

2. Background

There exist formalisms, modeling languages, and frameworks to develop behavioral models. Our work is centered on

the rigorous specification of DEVS as an abstract mathematical formalism accompanied with a framework supported with

modeling languages and run-time execution. In the following sub-sections, we describe basic background details for under-

standing and developing behavioral models.

2.1. Parallel DEVS atomic model

The set-theoretic specification of the atomic model is an abstract representation of a standalone component of a system

[1] . The formal specification can be defined independent of any language, and more generally simulation platforms. From a

software standpoint, we need to have the specifications to be formulated in terms of a modeling and software programming

languages. There are many DEVS simulators that can accept the specification of a model following a target simulator’s pro-

gramming language syntax, semantics, and specialized constructs such as model initialization. Examples of these tools are

DEVS-Suite [2] and CoSMoS (Component-based System Modeling and Simulation) [12] where the programming language is

Java. Other simulators use different languages as an input such as CD++ [13] and PowerDEVS [14] where the programming

language is C++. In [15] , the work provides a specific language based on the formal specification definition language with

set of rules to translate it into simulatable models targeting simulators like DEVS-Suite and PowerDEVS. As defined in [1] ,

the basic formalism of parallel DEVS model is an algebraic structure – atomic model = 〈 X, Y, S, δext , δint , δcon , λ, ta 〉 . X is

the set of input events. S is state representing the tuple of sequential states. The state must have at least two independent

variables. One is called sigma (σ), the time duration allocated to the current state of the model. The other variable, called

phase , represents a set of state values that change and be tracked. Y is the set of output events. δint and δext are the internal

and external transition functions, respectively. The model receives a bag of inputs meaning that the elements of the bag

may have multiple occurrences and have no ordering. The receiving model accounts for this possibility in order to perform

a proper handling of the inputs. δcon is the confluent transition function which can be specified to handle the collision

between external and internal events. λ is the output function which transforms S into Y at arbitrary time instances. ta is

the time advance function which maps the internal state into a positive real number using elapsed time since last state

transition (i.e., it computes σ which can range from zero to infinity, inclusive). Any domain specific definition of the afore-

mentioned functions must satisfy their corresponding abstract definitions as provided in the modeling formalism. Together

the elements of the DEVS specification allow modeler to flexibly define operations and controls for system structure and

behavior.

Download English Version:

https://daneshyari.com/en/article/6902752

Download Persian Version:

https://daneshyari.com/article/6902752

Daneshyari.com

https://daneshyari.com/en/article/6902752
https://daneshyari.com/article/6902752
https://daneshyari.com

