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a b s t r a c t 

Sequential bifurcation (or SB) is an efficient and effective factor-screening method; i.e., SB 

quickly identifies the important factors (inputs) in experiments with simulation models 

that have very many factors—provided the SB assumptions are valid. The specific SB as- 

sumptions are: (i) a second-order polynomial is an adequate approximation (a valid meta- 

model) of the input/output function of the underlying simulation model; (ii) the directions 

(signs) of the first-order effects are known (so the first-order polynomial approximation 

is monotonic); (iii) so-called “heredity” applies; i.e., if a specific input has a “small” first- 

order effect, then this input has “small” second order effects. Moreover, SB assumes Gaus- 

sian simulation outputs if the simulation model is stochastic (random). A generalization 

of SB called “multiresponse SB” (or MSB) uses the same assumptions, but allows multi- 

ple types of simulation responses (outputs). In this article, we develop heuristic practi- 

cal methods for testing whether these assumptions hold, and we evaluate these methods 

through Monte Carlo experiments and a case study (namely, a Chinese logistics network). 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

By definition, factor screening—or briefly screening —means searching for the really important factors—or inputs—among 

the many factors that can be varied in an experiment with a given simulation model (we shall define “important” below). 

For example, Bettonvil and Kleijnen [2] applies the screening method called “sequential bifurcation”—abbreviated to SB—to 

a case study, and finds that only 15 of the 281 inputs are really important. So, screening assumes that input effects are 

sparse ; i.e., only a few inputs among the many inputs are really important. Related to this sparsity are the Pareto principle 

and the 20–80 rule, which implies that roughly 20% of the inputs account for 80% of the effect on the output. The law of 

parsimony and Occam’s razor imply that a simpler explanation with fewer factors is better than a complex explanation with 

many factors—all other things being equal. Altogether, we conclude that there is really a need for screening in the design 

and analysis of experiments with practical simulation models. 

Furthermore, we assume that the number of inputs (say) k is so large that classic designs cannot be applied. For example, 

a resolution-III (R-III) design requires an experiment with at least k + 1 input combinations to estimate the effects in a first- 

order polynomial with k inputs plus an intercept, assuming this polynomial provides an adequate (valid) approximation or 

metamodel (emulator, surrogate) of the simulation model (we provide many synonyms, because simulation is used in many 

∗ Corresponding author. 

E-mail addresses: shi3wen@163.com (W. Shi), kleijnen@uvt.nl (J.P.C. Kleijnen). 

https://doi.org/10.1016/j.simpat.2017.12.003 

1569-190X/© 2017 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.simpat.2017.12.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/simpat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2017.12.003&domain=pdf
mailto:shi3wen@163.com
mailto:kleijnen@uvt.nl
https://doi.org/10.1016/j.simpat.2017.12.003


86 W. Shi, J.P.C. Kleijnen / Simulation Modelling Practice and Theory 81 (2018) 85–99 

scientific disciplines, which have their own terminology). Higher-order polynomials require bigger designs; e.g., a second- 

order polynomial may be estimated through a central composite design (CCD), which has 1 + k + k (k − 1) / 2 + k input 

combinations. Kleijnen [6] discusses design of experiments (DOE), including classic designs—such as R-III designs and CCDs—

and several types of screening designs—besides SB. A recent article in this journal that applies DOE including a 2 3 design 

and a CCD is Vasandani et al. [16] . A recent publication that discusses screening designs is Shi et al. [15] . 

In this article we focus on SB and its extension to simulation models with multiple responses; this extension is called 

multiresponse SB (MSB) in Shi et al. [13] . Actually, MSB includes SB as a special case; namely, a single response. For brevity’s 

sake we shall write “MSB”—instead of “SB or MSB” or “MSB including SB”—if the context makes confusion unlikely. The 

goal of MSB is to identify the inputs that have important effects on one or more output (response) types among the n ≥ 1 

output types. 

We consider the following problem. The given simulation model has so many inputs that classic designs require too 

much computer time, so the simulation analysts apply screening. Each type of screening design has its own assumptions. 

Because MSB is the most efficient screening design, the analysts apply MSB. In general we emphasize that after analysts have 

applied a statistical method to solve a given problem, these analysts should next examine the results to verify whether these 

results are not conflicting with the assumptions of the method. For example, the analysts apply linear regression to analyze 

a data set obtained through a simulation experiment; then they should next validate the estimated (fitted) regression model 

through the coefficient of determination R 2 and cross-validation ( R 2 and cross-validation are detailed in Kleijnen [6 , p. 112–

121]. More specifically, after the analysts have applied MSB to find important inputs, they should verify whether these 

results do not conflict with the assumptions of MSB. For this verification we derive and evaluate several statistical tests in 

this article. These post-screening (follow-up) tests definitely require less experimentation than MSB requires; e.g., one test 

requires the simulation of only two (extreme) input combinations, to validate the first-order polynomial metamodel in SB 

(which assumes a single response type). 

SB was originally developed in Bettonvil [3] ’s dissertation and summarized in Bettonvil and Kleijnen [2] . Several authors 

extended SB; see the many references in Kleijnen [6] , and also see Han et al. [4] and Martín and Sánchez [9] . To save space, 

we refer to the detailed description of SB and MSB that is given in [13] ; for our article it suffices to detail the following 

three specific MSB assumptions : 

1. Second-order polynomials provide valid metamodels: 
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where y ( l ) denotes the metamodel’s predictor for simulation output l with l = 1, …, n and n ≥ 1 ( n = 1 in SB), x j the 

standardized (coded, scaled) simulation input j ( j = 1 , . . . , k ) so −1 ≤ x j ≤ 1 —if an original input is qualitative and has 

only two levels (so it is binary), then its levels are randomly associated with the standardized values −1 and 1—β(l) 
0 

the 

intercept for output l , β(l) 
j 

the first-order (or main effect) of x j for output l , β(l) 
j ; j ′ the interaction between x j and x j ′ for 

output l , β(l) 
j; j 

the purely quadratic effect of x j for output l , and e ( l ) the approximation error with zero mean for output l . 

2. The β(l) 
j 

have known signs , so that the low bound l j and the upper bound u j of the original (nonstandardized) input 

z j can be defined such that all k first-order effects are nonnegative for one of the n output types—(say) output type 1 (the 

symbol l j is an easy mnemonic for “low”, but should not be confused with the symbol l in the superscript ( l ); we use the 

symbol ( l ) because Shi et al. [13] uses that symbol). This assumption implies β(1) 
j 

≥ 0 (the superscript is (1), not ( l )). 

Without assumption 2, first-order effects may cancel each other within a group of individual inputs that is used in MSB. 

Note that this assumption implies that the first-order polynomial is monotonically increasing in x j ( j = 1, ..., k ). 

3. If input j has a “small” first-order effect on simulation output l , then this input has “small” second-order effects on 

this output; we shall define “small” later on (e.g., above eq. (4)). Wu and Hamada [19] calls this the heredity assumption; 

this assumption is also discussed in Woods and Lewis [20] . 

Many publications on screening discuss the plausibility of these three assumptions. We discuss formalized statistical tests 

of these assumptions; such tests are often neglected in the literature. 

Note: If our tests reject these MSB assumptions, then MSB may still identify the important inputs; i.e., these assumptions 

are sufficient but not necessary. However, we consider it to be unlikely that these assumptions do not hold, but MSB still 

“works”. (Hasty readers may skip paragraphs that start with “Note:”, and still understand this article.) 

Besides the preceding three specific MSB assumptions, MSB—like many other statistical methods—assumes that the sim- 

ulation outputs have normal (Gaussian) distributions. Our tests also assume normality. 

We organize the rest of this article as follows. In Section 2 we discuss the assumed normality of the simulation outputs. 

In Section 3 we detail our tests for the specific three MSB assumptions. In Section 4 we compare these tests through a 

Monte Carlo experiment that does satisfy all MSB assumptions. In Section 5 we compare these tests through a case study 

concerning a logistics system in China; obviously, case studies may violate one or more MSB assumptions. In Section 6 we 

summarize the major conclusions and sketch future research. 



Download English Version:

https://daneshyari.com/en/article/6902766

Download Persian Version:

https://daneshyari.com/article/6902766

Daneshyari.com

https://daneshyari.com/en/article/6902766
https://daneshyari.com/article/6902766
https://daneshyari.com

