Sustainable Computing: Informatics and Systems 19 (2018) 43-51

= _Sustainable
Cu;mput?ng

Contents lists available at ScienceDirect

Sustainable Computing: Informatics and Systems

journal homepage: www.elsevier.com/locate/suscom

Prediction assisted runtime based energy tuning mechanism for HPC )

Check for

applications™ i

Shajulin Benedict

Indian Institute of Information Technology Kottayam, Kerala, India

ARTICLE INFO ABSTRACT

Keywords: Performance tuning has become a crucial step for large-scale HPC applications, including HPC based Cloud
Compiler switches applications. A need for an energy-aware autotuning solution has recently widened research thrusts among
DiscretePSO

energy conscious scalable application developers. There exist a few standalone energy reduction approaches
such as reducing MPI wait times, diligently selecting CPU frequencies, efficiently mapping workloads to CPUs,
and so forth for HPC applications. Implementing energy-aware autotuning mechanisms for HPC applications,
however, might require multiple executions if exhaustively tested. This paper proposes a prediction assisted
energy tuning mechanism named Random Forest Modeling based Compiler Optimization Switch Selection
mechanism (RFM-COSS) for HPC applications. RFM-COSS was implemented using RFM algorithm and its var-
iants, namely RFM-SRC and RFM-Ranger. The training datasets of RFM-COSS were created using DiscretePSO
algorithm for a few candidate benchmarks such as hpce, MPI-Matrix, and Jacobi. The experimental results of the
proposed RFM-COSS prediction mechanism achieved 17.7 to 88.39 percentage points of energy efficiencies for

Energy tuning
HPC applications
Tools

HPC applications.

1. Introduction

HPC application developers, in general, are interested in enhancing
the performance of applications at various levels of runs. Given the
limited electrical budgeting and increased electrical billing of HPC ar-
chitectures, in recent years, the decision to design energy-aware auto-
tuning frameworks for HPC applications has occupied the minds of HPC
researchers [28], including the supercomputing/HPC community.

Energy tuning of HPC/exascale applications, in general, is a scien-
tific keyword teaming with so many tuning options and objectives that
there will never be enough time for users to evaluate and understand
the tuning options (even the satisfactory fraction of them) if manually
tested.

There exist a few energy tuning mechanisms for HPC applications
such as MPI parameter tuning, problem size tuning, CPU frequency
tuning, and so forth [7,29,8], including the selection of compiler opti-
mization switches. However, selecting the most energy efficient com-
bination of compiler optimization switches for HPC applications is a
challenging task due to the following reasons:

1. the most commonly used compilers such as icc, gec, opence, or pgcec,
including mpi wrappers (bullxmpi), have numerous compiler

optimization switches. This increases the time required for selecting
the energy-aware set of compiler optimization switches for appli-
cations.

2. utilizing vendor specific compiler switch optimization options
namely, -Ox, for applications, is not always a performance-efficient
solution. This is due to the fact that the -Ox compiler optimization
switches have a fixed set of compiler optimization switches irre-
spective of applications or architectures.

Precisely, users can hardly find time to manually probe further into
the underlying effects of adding/removing each compiler optimization
switch for their applications on HPC machines. This arduousness fur-
ther worsens when a specific code region of an application is concerned.
In addition, energy-aware productive compilers are very rare in the
HPC market that focuses on the code regions of HPC applications. These
reasons lead HPC application developers or autotuning designers to opt
for a tool or a method which automatically finds the energy-aware
combinations of compiler optimization switches for the code regions of
applications.

This paper proposes an RFM-based Compiler Optimization Switch
Selection (RFM-COSS) mechanism which automatically tunes the
compiler optimization switches for HPC applications. Executing all

* This work is partially supported by the Indo-Austrian project — DST No: INT/AUA/FWF/P-02/2013.

E-mail address: shajulin@iiitkottayam.ac.in.
URL: http://www.iiitkottayam.ac.in/shajulin.php.

https://doi.org/10.1016/j.suscom.2018.06.004

Received 13 December 2016; Received in revised form 27 April 2018; Accepted 20 June 2018

Available online 02 July 2018
2210-5379/ © 2018 Elsevier Inc. All rights reserved.


http://www.sciencedirect.com/science/journal/22105379
https://www.elsevier.com/locate/suscom
https://doi.org/10.1016/j.suscom.2018.06.004
https://doi.org/10.1016/j.suscom.2018.06.004
mailto:shajulin@iiitkottayam.ac.in
http://www.iiitkottayam.ac.in/shajulin.php
https://doi.org/10.1016/j.suscom.2018.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.suscom.2018.06.004&domain=pdf

S. Benedict

combinations of compiler switches can lead to several executions of
applications. In order to elegantly handle the tuning process, RFM-
COSS works in two phases: Phase I prepares an EAPerfDBRepo re-
pository, a mongodb based repository of EnergyAnalyzer tool (EA),
which consists of energy-efficient compiler optimization switches.
These compiler optimization switches are identified from a few candi-
date benchmarks/applications (known applications) using a newly de-
veloped DiscretePSO energy tuning option of EA (see Section 3). Dis-
cretePSO energy tuning option of RFM-COSS not only collects the
energy efficient compiler optimization switches for the candidate
benchmarks to EAPerfDBRepo repository, but also the corresponding
performance and energy consumption values of these benchmarks;
Phase II of RFM-COSS utilizes the EAPerfDBRepo repository data as
training datasets and attempts to predict the energy-aware compiler
optimization switches for the code regions of applications. The pre-
dictions are carried out using Random Forest Modeling (RFM) and its
variants such as Random Forest-Survival, Regression, Classification
(RFM-SRC) and RFM-Ranger. The predicted compiler optimization
switches from RFM and its variants are evaluated on HPC machines and
the best energy-aware combination of compiler switches is selected. In
addition, the proposed RFM-COSS approach was tested with a battery
of applications.
In succinct, the contributions of this paper are listed as follows:

1. an energy prediction assisted RFM-COSS mechanism, a combined
effort of predictions made by RFM and its variants, was proposed for
automatically tuning the compiler optimization switches for the
code regions of HPC applications.

2. the potential energy-aware optimization switches were collected
during the training phase of RFM-COSS using the DiscretePSO
tuning process of EnergyAnalyzer.

3. Random Forest Modeling prediction mechanism and its variants
such as RFM-SRC and RFM-Ranger were investigated for HPC ap-
plications/benchmarks; and, the experimental results of the RFM-
COSS approach were compared with the linear regression based
prediction approach.

The rest of the paper is organized as follows. The existing auto-
tuning and energy tuning approaches are presented in Section 2. Sec-
tion 3 explains the proposed RFM based Compiler Optimization Switch
Selection (RFM-COSS) mechanism for applications. Section 4 presents
the experimentation carried out for hpc applications. Finally, Section 5
presents a few conclusions of the work.

2. Related work

Performance engineering research is obviously progressing in the
context of autotuning designs for HPC applications. Several researchers
are vigorously working toward framing autotuning architectures
[29,10,2,15,23,12,24], including cloud environments [19,20].

In addition, HPC researchers, for the past few years, have gotten
interested in designing energy efficient software and energy efficient
HPC systems. Most of them are more focused on designing energy re-
duction mechanisms for HPC applications [1,7,25]. For instances, [5]
had proposed a notion which endeavored to efficiently utilize the
parallel systems. In fact, a parallel application might not require all
allocated cores or threads throughout its execution. The authors in [5]
have avoided the idleness of cores/threads by switching on/off the
resources and clocking the CPU frequencies to low/high power states.
Knobloch et al. [17] and Flin et al. [9] have studied the effects of the
wait times of real-world MPI applications and their respective energy
consumption details.

Subsequently, the performance analysis tool developers and appli-
cation developers [3,31,18] have oriented their investigations for de-
signing energy-aware autotuning frameworks. Designing autotuning
frameworks, in general, is a challenge. This is due to the fact that a

44

Sustainable Computing: Informatics and Systems 19 (2018) 43-51

sophisticated autotuning framework should scale very well, should
have high portability, should be insightful, should automatically decide
on the executions (as an astronomer), and should have the capacity to
handle the heterogeneous nature of complex architectures.

Selecting the right optimization switches of compilers in order to
improve the performance of applications has been a research interest
among a wide sector of HPC researchers. With the rising complexity in
compilers and architectures, finding the best set of compiler switches in
an automatic fashion, however, has become a serious challenge to HPC
researchers. Accordingly, a few researchers have studied the selection
of compiler optimizations using performance counters [4], statistical
approaches [22], reduced exhaustive search mechanisms, iterative
elimination approaches [21], and heuristic approaches, including Ge-
netic Algorithms [11] in the recent past years. In addition, a few other
researchers have identified the compiler bugs and the faults of threaded
applications using compiler optimization options.

For instances, in [4], authors have utilized the performance results
of a few benchmarks and then applied the logistic regression modeling
approach for predicting the compiler optimization switches of appli-
cations. This approach is similar in terms of using hardware counters
for constructing the prediction model. However, the authors of [4] had
to run benchmarks each and every time for predicting the combinations
which could lead to overheads. In [22], authors have statically selected
the compiler optimization switches by iteratively executing a few se-
lective applications from the multimedia and cryptography domains on
selective machines such as ARM MPCore processor machines. Hence,
this work has restricted their research to a few selective application
domains. In [11], authors have applied a black box technique of iden-
tifying a few compiler optimization options for applications. However,
this approach did not either construct models or predict the compiler
optimization options of applications.

In this paper, DiscretePSO based energy tuning mechanism is ap-
plied for collecting the best possible compiler optimization switches in a
repository with respect to a few candidate benchmarks in Phase I of
RFM-COSS. In fact, this phase is required only once. The performance
inference availed during the tuning process of benchmarks/applications
is utilized to predict the compiler optimization switches for the code
regions of HPC applications using RFM and its variants in the second
phase of the RFM-COSS mechanism.

3. RFM-COSS energy tuning approach

There are more than 10s of 100s of compiler optimization switches
for the most commonly available compilers such as icc, gcc, or pgce. For
instance, bullxmpi-1.2.8.4, a gcc-5.4.0 compiler wrapper of mpi, has
around 198 compiler optimization switches. Predicting an energy-
aware combination of compiler optimization switches is considered to
be an ideal primordial task for HPC applications. This is due to the fact
that the compile time of real applications may be extremely high.

This paper proposes a Random Forest Modeling based Compiler
Optimization Switch Selection (RFM-COSS) mechanism which operates
in two phases — (i) DiscretePSO based training dataset preparation
phase for a few candidate benchmarks and (ii) RFM prediction phase
(see Fig. 1). The RFM prediction phase is a combined effort of RFM and
its variants namely RFM-SRC and RFM-Ranger. A detailed information
of these phases is elabored in Sections 3.1 and 3.2.

3.1. Phase I — DiscretePSO based energy tuning of benchmarks

The notion of Phase I of RFM-COSS is to create a repository of en-
ergy-aware compiler optimization switches, the training dataset of
RFM-COSS, using the DiscretePSO algorithm [16] based energy tuning
process of EnergyAnalyzer tool (EA) (see Fig. 1). RFM-COSS collects the
hardware performance counter values of the code regions of bench-
marks such as total number of executions, total cache misses, and so
forth (including energy consumption values) when benchmarks were



Download English Version:

https://daneshyari.com/en/article/6902986

Download Persian Version:

https://daneshyari.com/article/6902986

Daneshyari.com


https://daneshyari.com/en/article/6902986
https://daneshyari.com/article/6902986
https://daneshyari.com

