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a  b  s  t  r  a  c  t

Scheduling  sensors  to  prolong  the  lifetime  of target  coverage  is one  of the  central  problems  faced  in
wireless  sensor  networks.  This  problem,  called  the  maximum  lifetime  coverage  problem  (MLCP),  can  be
formulated  as a linear  program  with  exponential  size  and has  a polynomial-time  approximation  scheme
(PTAS).  In  reality,  however,  sensor  batteries  are  subject  to  the  recovery  effect,  which  means  that the
deliverable  energy  in  a battery  can  replenish  itself  if it is left idle  for a  sufficient  duration.  Thanks  to
this  effect,  we can obtain  much  longer  sensor  lifetime  if each  sensor  is  intermittently  forced  to  turn
off  for some  interval.  In  this  study,  we  introduce  two  models  that  extend  the  MLCP  to  incorporate  the
battery  recovery  effect. The  first  model,  called  as duty  cycle  model,  represents  the  battery  recovery  effect
in a deterministic  way.  The  second  one,  called  as  linear  recovery  model,  uses  a  probabilistic  model  to
imitate  this  effect.  We  propose  two efficient  algorithms  that  work  for both  models,  adapting  greedy
and  Garg–Könemann-based  algorithms  for  the original  MLCP.  In our  numerical  experiments,  our greedy
algorithm  performs  best  in  the  duty  cycle  model,  while  our  Garg–Könemann-based  algorithm  performs
best  in  the linear  recovery  model.  For  each  network,  we  compare  the  longest  lifetime  obtained  from  our
algorithms  with  the  longest  lifetime  obtained  from  algorithms  for the  original  MLCP.  As a  result,  we  found
that our  lifetime  is 10–40% longer.

©  2018 Elsevier  Inc.  All  rights  reserved.

1. Introduction

One of the most important applications of wireless sensor net-
works is to monitor the environment of given targets. Unlike
IP networks, the amount of energy in each sensor is very lim-
ited. Hence, many methods have been proposed to optimize the
monitoring under energy limitations [2–4]. In addition to energy
limitations, the area that each sensor can monitor is also limited;
that is, the sensor can observe only a small region of the target field.
In this paper, we assume that the region is a unit circle. Also, we
assume that every target can be monitored by at least one sensor.

Sensors have two modes, namely, idle and active. They consume
significantly more energy in active mode while cannot observe the
environment in idle mode (see [5] for example). We  would like to
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monitor every target area by at least one active sensor as long as
possible. The duration of monitoring every target area is called as
the network lifetime. The constraint is satisfied when all the sensors
are always in an active mode. In this case, the network lifetime is
equal to the sensor battery lifetime. However, a small subset of the
sensors is usually enough to monitor all the targets, as the num-
ber of sensors placed on the field is large compared to the number
of targets. We  can prolong the network lifetime by switching an
appropriate subset of the sensors to the active mode for a proper
length of time and then replacing it by another subset.

The problem of finding a switching method that can maximize
the network lifetime is called as the maximum lifetime coverage
problem (MLCP). MLCP has been studied extensively in the lit-
erature, where various methods are proposed to solve it. Those
methods include the greedy heuristic algorithms [6], algorithms
based on the general framework for packing linear programs of
Garg and Könemann in [7]. The Garg and Könemann framework
includes a (1 + lnn)-approximation algorithm for a network with n
sensors in [8], a (4 + ε)-approximation algorithm for an arbitrary
small ε > 0 in [9], a constant-factor approximation based on lin-
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ear programming (LP) relaxation in [10], and a polynomial-time
approximation scheme (PTAS) in [11].

In practical battery usage, there is a phenomenon called battery
recovery effect, which refers to the process by which the deliverable
energy in a battery can replenish itself if it is left idle for a sufficient
duration. However, to the best of our knowledge, there is no work
applying the recovery effect to a practical sensor network setting.
This motivates us to incorporate the effect in MLCP, one of the well-
studied practical problems for sensor networks.

Two mathematical models have been proposed to capture the
characteristics of the battery recovery effect. The first one is the
kinetic battery model [12,13], which attempts to model the details
of chemical reactions and diffusion process of a battery through a
set of partial differential equations. These models aim to fully cap-
ture the nonlinear dynamics of a battery. However, it is hard to
include this complicated model in our coverage problem because
the problem becomes finding solutions for a system of nonlin-
ear differential equations, which is computationally hard. Another
model is the stochastic battery model [14–17], which captures
the battery dynamics using a probabilistic Markovian model. This
model is simpler, but cannot capture battery behaviors as well as
the first one can.

The battery models in this work are based on the research by
Chau et al. [14]. Although their model is simpler and more ana-
lyzable than both models discussed above, it can capture several
interesting battery characteristics. These include the fact that the
amount of battery recovered over the whole usage cannot be larger
than a specific number and the fact that the recovery in each idle
period is usually small. These effects imply that we can maximize
the battery recovery by periodically turning on and off our batter-
ies for a specific and short period of time. We  call such a switching
strategy a duty cycle. The experimental results in [14] show that
the lifetime of a battery can be increased up to 40% if the most
appropriate duty cycle is used.

Another reason that we choose this stochastic model is its sim-
plicity. The model is simple enough to explain a wide range of
phenomena other than the battery recovery effect. Hence, we  can
also use our algorithm to solve MLCP while incorporating those
phenomena, which include the energy-harvesting model [18].

1.1. Our contribution

We  introduce two models based on the results in [14].

• Duty cycle model: Each sensor must be turned off after being active
for a while. Consequently, because of the battery recovery effect,
each sensor is guaranteed to have more battery lifetime.

• Linear recovery model: The battery recovery amount of each sen-
sor is determined by the amount of idle time since the last
discharge.

With the above two models, we aim to maximize the lifetime
of the target coverage. The problem looks similar to MLCP, but is
significantly harder. To illustrate the reason, suppose that we can
use disjoint sets of sensors S1 and S2 to cover the target areas and
all the sensors in S1, S2 can be used for 1 h. Consider the following
two schedules:

Schedule 1:

1. Use S1 for 1 h.
2. Use S2 for 1 h.

Schedule 2: (repeat for 30 iterations)

1. Use S1 for 2 min.

2. Use S2 for 2 min.

In previous work where the battery recovery effect is not con-
sidered, none of the batteries can be used after either schedule is
completed. All schedules that use S1 and S2 for 1 h in total have the
same efficiency. Therefore, we can maximize the network lifetime
just by deciding how long each set of sensors should be used.

In contrast, when the battery recovery effect is considered, bat-
teries can be replenished during the idle periods. Let us assume that,
for each idle period that is longer than 2 min, the battery lifetime is
increased by 1 min. Hence, in Schedule 1, the recovery amount of all
the batteries is 1 min. On the other hand, as the number of iteration
in Schedule 2 is at least 30 and all batteries’ lifetime is increased
by 1 min  at all iteration, the recovery amount of all batteries is at
least 30 min. We  can continue to use Schedule 1 for at least two
more minutes, whereas we  can use Schedule 2 for at least 60 more
minutes. That is, the lifetime obtained from Schedule 2 is longer
than the one obtained from Schedule 1. This example shows that,
to maximize the network lifetime, it is not enough to just decide
the duration for each subset of sensors. We  also need to calculate
an optimal usage sequence and the duration for each step in the
sequence. Therefore, it is hard to modify the MLCP solution to solve
the problem, and we  cannot directly apply algorithms for MLCP to
solve it.

In this paper, we  devise three methods for both battery mod-
els by extending the algorithms for MLCP: greedy algorithms [6],
the Garg–Könemann algorithm [7] and integer linear programming
(ILP) formulations. The running times of all the proposed algo-
rithms do not depend on the battery lifetime, and the asymptotic
complexity is not larger than the algorithms for the original MLCP.

Through numerical experiments, we  can see that our algorithms
run as fast as those for the original MLCP, and the obtained solutions
become much better. For the duty cycle model, the greedy heuris-
tic algorithm works very efficiently. Its running time is usually less
than 0.5 s. on average. The lifetime obtained from the greedy heuris-
tic algorithm is about 40% longer than the one without the battery
recovery effect. Furthermore, we show that the solution is close
to the optimal solution obtained from the ILP formulation, as the
difference between the two solutions is always less than 4.2%.

Because we assume that each battery can be recovered by 40% in
our experiment, we know that the network lifetime cannot be pro-
longed by more than 40%. Because the experimental results show
that our greedy heuristic algorithm can extend the lifetime by about
40%, the results indicate that it can almost fully utilize the battery
recovery effect.

In contrast, the best algorithm for the linear recovery model is
the algorithm based on the Garg–Könemann’s framework. Our the-
oretical results show that the approximation ratio of the algorithm
is at most 1.4 + ε for any fixed ε > 0. In our numerical experiments,
we can obtain a lifetime that is 10% longer compared to the greedy
heuristic algorithm. The experimental results also indicate that the
algorithm is relatively fast, as we  can compute a sensor schedule in
only 19.3 s on average.

Our approximation ratio for the MLCP with the battery recovery
effect is slightly larger than the best approximation ratio for the
original MLCP problem, which is 1 + ε for any ε > 0.

Although our experimental results show a significant improve-
ment in the network lifetime by using the battery recovery effect,
the schedules obtained from our algorithms are more complicated
than those of the original MLCP solutions. While each switch is
turned on and off only a few times in the original MLCP, switches are
turned on and off several hundred times in our schedules. Because
our algorithms are centralized, we must send our schedule to each
sensor. This may increase the communication cost, spending more
energy of sensors. We  show, however, in our experiments that it is
not very critical. Because the size of our message to each sensor is
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