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A B S T R A C T

In portfolio optimization (PO), often, a risk measure is an objective to be minimized or an efficient frontier
representing the best tradeoff between return and risk is sought. In order to overcome computational difficulties
of this NP-hard problem, a growing number of researchers have adopted swarm intelligence (SI) methodologies to
deal with PO. The main PO models are summarized, and the suggested SI methodologies are analyzed in depth by
conducting a survey from the recent published literature. Hence, this study provides a review of the SI contri-
butions to PO literature and identifies areas of opportunity for future research.

1. Introduction

Diversification of investments is a well-established practice used for
reducing the total risk of investing for ages in the early history of port-
folio theory [1]. A simple diversification strategy that spreads investment
into different securities from various sectors, companies, businesses, lo-
cations and governments is commonly used. This strategy when applied
alone may overlook the big picture since the attention is given on the
individual securities rather than the relationship among the securities.
Markowitz [2] proposed the mean-variance (M-V) model that brings a
quantitative approach to portfolio management by using variance as a
measure of economic risk for a desired efficient diversification of
securities. Thus, in addition to the characteristics of individual securities,
the relationships among all securities can also be considered. Although
the use of variance as a risk measure [2,3] has been a touchstone in the
history of portfolio theory, alternative risk measures such as Variance
with skewness (VwS) [4], Value-at-Risk (VaR) [5], Conditional
Value-at-Risk (CVaR) [6], Mean-Absolute Deviation (MAD) [7] and
Minimax (MM) [8] portfolio optimization models have been proposed in
the literature.

Limitations faced by real-life investors weaken the direct applicability
of basic POmodels, having a lack of specific constraints such as boundary
constraints (BC) [9], cardinality constraints (CC) [10], transaction
costs (TC) [11] and transaction lots (TL) [7]. Unconstrained portfolio
optimization, a typical convex quadratic programming problem, can be
efficiently solved by exact approaches such as linear and quadratic pro-
gramming. However, as proven by Bienstock [10], adding practical

restrictions such as cardinality constraints to the model, the problem is
converted to mixed-integer quadratic programming which is dragged
into NP-complete class of problems which limits the computational
efficiency of exact solution approaches while the problem size increases.
Therefore, researchers paid a particular attention on developing
approximation methods such as heuristic/metaheuristic algorithms.
Evolutionary Algorithms (EA) and Swarm Intelligence (SI) methodolo-
gies are two of the most preferred solution approaches for portfolio
optimization. Metaxiotis and Liagkouras [12] presented a literature
review of multi-objective EA while Kalayci et al. [13] presented a recent
review of genetic algorithms for portfolio optimization. Unlike EA
utilizing principles of natural selection, SI methodologies are inspired by
the behaviors and self-organizing interaction among agents, such as
foraging of ant and bee colonies, bird flocking or fish schooling. Some of
the SI algorithms adopted for solving PO variants are listed as follows:
particle swarm optimization (PSO) [14], ant colony optimization (ACO)
[15], bacterial foraging optimization (BFO) [16], artificial bee colony
(ABC) [17], cat swarm optimization (CSO) [18], firefly algorithm (FA)
[19], invasive weed optimization (IWO) [20], bat algorithm (BA) [21]
and fireworks algorithm (FA) [22].

According to the authors' knowledge, there is no study that specif-
ically provides a comprehensive review of SI methodologies adopted for
solving portfolio optimization problems. Therefore, considering the
attracted attention of both academics and practitioners, it is time of in-
terest to present how the SI for the portfolio optimization field has
evolved and what its present state is. The objective is to present and gain
an understanding of the current state of research in SI methodologies for
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portfolio optimization by providing a review of the available literature in
the field to identify potential areas of concern.

The rest of the paper is structured as follows: Section 2 presents the
models and constraints for portfolio optimization, Section 3 presents a
quick peek into solution approaches for PO, Section 4 describes different
SI algorithms and reviews applications on PO, Section 5 reviews problem
specific application contexts, Section 6 discusses characteristics, advan-
tages and adequacy of different methods and finally, Section 7 concludes
the paper and provides future research issues and directions.

2. Models for portfolio optimization

In this section, we briefly present the PO models and additional
constraints for realistic portfolio management. Table 1 presents a sum-
mary of different models for PO.

In the M-Vmodel [2], the portfolio risk is measured by the variance of
stock prices. In general, covariance matrix among individual stocks and
expected return of stocks are estimated using the historical data. How-
ever, the M-V approach may lead to an insufficient prediction of portfolio
given an asymmetric return distribution since M-V model assumes that
expected returns have a symmetric multivariate normal distribution.
Hence, Markowitz also suggested a model based on semi-variance (S-V)
[2] which is more preferable for stock returns having an asymmetric
distribution. In order to successfully capture the characteristics of the
return distribution, another approach is to include skewness into the M-V
model [15]. While positive skewness in portfolio returns may lead some
reduction in downside risk which is favorable to investors, the coefficient
of skewness is affected by returns greater or less than the mean return
achieving portfolios with similar skewness but quite different downside
behavior.

The M-V model consists of a quadratic objective function and linear
constraints. While Markowitz [2] is said to be the father of modern
portfolio theory, the M-V model has been criticized because of its
structure and therefore, alternative risk measures such as VaR, CVaR,
MAD and MM have been proposed in the literature. In order to overcome
arising computational difficulties due to the quadratic structure of M-V
model, Konno and Yamazaki [7] proposed MAD as an alternative risk
measure that employ the mean of the absolute deviations of the portfolio
return in all periods as the risk measure. The portfolio return is devised
from the corresponding historical returns of the stocks. The risk in this
model is measured by absolute deviation of the assets rate of return.
Therefore, calculating the covariance matrix is unnecessary with the
model having less computational cost and is very easy to update
the model when new data are added. Furthermore, its risk function can
be transformed into parametric linear programming, and thus portfolio
optimization implementation is simplified. However, Simaan [23]
reports that, although estimation error is more severe in small samples
and for investors with high risk tolerance in both M-V and MAD models,
M-V model provides lower estimation risk in small samples and for in-
vestors with a low risk tolerance.

Another risk measure is MM, proposed by Young [8]; it is based on
game theory, uses minimum return rather than variance as a measure of
risk to avoid the logical problems of a quadratic utility function implied

by M-V portfolio selection rules. In MMmodel, portfolio risk is measured
by the minimum portfolio return over all periods. Thus, in contrast to
M-V and MAD models, in MM model, the risk measure is asymmetric
which is claimed to be more appropriate for skewed return distributions
[8].

CVaR [6], also known as Mean Excess Loss, Mean Shortfall, or Tail
VaR, is proposed to approximate the joint density function by a number
of scenarios to obtain a linear model. VaR [5] describing the quantile of
the projected distribution of gains and losses over the target horizon
measures the worst loss (lowest return) a portfolio can potentially suffer
[24]. However, VaR has undesirable mathematical characteristics such as
a lack of subadditivity and convexity [6]. CVaR aiming to reduce the risk
of high losses based on VaR representing an asymmetric riskmeasure that
can be also used in return and risk analyses.

Fig. 1 demonstrates the distribution of considered models for port-
folio optimization in SI literature where M-V model is highly dominant
over other models.

2.1. Classification of portfolio optimization models

If the decision-making process and the future events in portfolio
optimization are restricted to a one-time period, a single-period portfolio
optimization (SPPO) model is under study. Although Markowitz [2,3]
also considers multi-period models as a course of its nature where, if
desired, the portfolio may be readjusted several times during the plan-
ning horizon, studying a sequence of decisions where transactions take
place at discrete time points instead of once is analyzed in multi-period
portfolio optimization (MPPO) model [25].

Fig. 2 demonstrates the distribution of model types for portfolio
optimization in SI literature where SPPO model is highly dominant. On
the other hand, there are a few attempts in SI literature [26–28] on
solving multi-period decision making models in which future events are
spread over several periods.

2.2. Additional constraints for realistic portfolio management

Limitations faced by real-life investors weaken the direct
applicability of basic PO models, having a lack of specific constraints,
where compulsory criteria are required, or easier implementation is
desired.

Although unconstrained (UC) model, namely, suggests having no
constraints in the model, the following limitations are present in the
default unconstrained setting: the investment of all funds is ensured, and
short sales are not allowed. The investment of all funds is verified by
exactly restricting the sum of security proportions to one and short sales
are excluded by utilizing non-negativity constraints [2]. In addition to
default unconstrained settings, additional constraints such as boundary
constraints (BC) [9], cardinality constraints (CC) [10], transaction costs
(TC) [11] and transaction lots (TL) [7] are needed for a more realistic
portfolio management.

Small proportions held in the portfolio have typically little impact on
the performance and have weak liquidity and can be usually costly in
terms of brokerage fees or monitoring costs. Therefore, in practice, a
lower limit preventing the holding of a position if one does not invest in
more than the minimal allowable position, called as min-buy or mini-
mum transaction level, may be desired/enforced when clients buy, sell or
revise stocks. An upper limit may also be used for flexibility. Therefore,
boundary constraints (BC) are added as a constraint in mathematical
formulations.

It is not possible for an investor/fund manager to purchase all the
securities in the index according to their weights. Therefore, a common
practice is to purchase just a subset of the entire set of securities for
easier management of the portfolio. Therefore under such circum-
stances, on top of enforcing boundaries, cardinality constraints [10] are
also needed to define an upper limit on the number of securities to be
held in a portfolio.

Table 1
Models for portfolio optimization.

Model Proposed By Structure Year

Mean-variance (M-V) Markowitz [2] Quadratic 1952
Variance with skewness (VwS) Samuelson [4] Quadratic 1958
Semi-variance (S-V) Markowitz [3] Quadratic 1959
Mean- Absolute
Deviation (MAD)

Konno and Yamazaki [7] Linear 1991

Value-at-Risk (VaR) Jorion [5] Linear 1997
Minimax (MM) Young [8] Linear 1998
Conditional
Value-at-Risk (CVaR)

Rockafellar and Uryasev [6] Linear 2000

O. Ertenlice, C.B. Kalayci Swarm and Evolutionary Computation 39 (2018) 36–52

37



Download English Version:

https://daneshyari.com/en/article/6903100

Download Persian Version:

https://daneshyari.com/article/6903100

Daneshyari.com

https://daneshyari.com/en/article/6903100
https://daneshyari.com/article/6903100
https://daneshyari.com

