
Three pseudo-utility ratio-inspired particle swarm optimization with local
search for multidimensional knapsack problem

Mingchang Chih

Department of Business Administration, National Chung Hsing University, South District, Taichung 402, Taiwan, ROC

A R T I C L E I N F O

Keywords:
Self-adaptive check and repair operator
Particle swarm optimization
Neighborhood local search
Multidimensional knapsack problem
Taguchi method

A B S T R A C T

In this study, a three-ratio self-adaptive check and repair operator-inspired particle swarm optimization (3R-
SACRO-PSO) with neighborhood local search is developed to solve the multidimensional knapsack problem
(MKP). The proposed 3R-SACRO-PSO systematically alters substitute pseudo-utility ratios as the PSO method is
executed. In addition, a local search scheme is introduced to improve solution quality. The proposed 3R-SACRO-
PSO algorithm is tested using 168 different widely used benchmarks from the OR-Library to demonstrate and
validate its performance. The control parameters for the performance test are determined through the Taguchi
method. Experimental results parallel those of other PSO algorithms, and statistical test results show that the
quality and efficiency of the proposed 3R-SACRO are better than those of the two-ratio SACRO method. Moreover,
the proposed 3R-SACRO-PSO is on par with state-of-the-art PSO approaches. Thus, introducing the third pseudo-
utility ratio into SACRO improves the performance of SACRO-based PSO. The neighborhood local search scheme
further improves the solution quality in handling MKPs.

1. Introduction

The multidimensional knapsack problem (MKP) is a generalized
model of the standard knapsack problem and is an intensively studied
discrete NP-hard problem. MKPs are found in various applications, and
several real-world problems are generally modeled as MKPs [1]. Math-
ematically, an m-dimensional knapsack problem with n items can be
formulated as

max z ¼
Xn
j¼1

cjyj; (1)

s:t:
Xn
j¼1

aijyj � bi; i ¼ 1; 2;⋯;m; (2)

yj 2 f0; 1g; j ¼ 1; 2;⋯; n; (3)

where each knapsack constraint i has the capacity bi for i ¼ 1, 2, …, m.
Each item j consumes aij units of resource in the ith constraint and yields
cj units of profit when it is selected. The goal of the mathematical pro-
gramming for MKP is to seek a subset of items to maximize profit without
violating the constrained knapsack capacities.

The MKP is a classic constrained combinatorial optimization problem
[2] that has been intensively studied by researchers. Numerous solutions
to MKPs have been recently proposed; these solutions include exact and
heuristic algorithms. Exact approaches are not functional for MKPs
because the search region of potential solutions exponentially grows as
the problem size increases. Therefore, many soft computing algorithms,
such as simulated annealing approach (SA) [3], Tabu search technique
(TS) [4], genetic algorithm (GA) [5], ant colony optimization algorithm
(ACO) [6], artificial immune system (AIS) [7], monarch butterfly opti-
mization (MBO) [8,9], firefly algorithm (FA) [10], cuckoo search algo-
rithm (CS) [11], and particle swarm optimization (PSO) [12,13], have
been developed to solve knapsack problems.

PSO was initially designed by Kennedy and Eberhart [14] for
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considering continuous nonlinear optimization. However, many pro-
gramming problems occur in a space that features binary or discrete
decision variables. Kennedy and Eberhart [15] further designed a
discrete version of the swarm intelligence method to solve these prob-
lems. To date, PSO has been successfully applied in several areas, such as
pattern clustering [16], crew scheduling problems [17], multi-robot path
planning [18], quality control [19], network reliability [20], inventory
routing problems [21], time series forecasting [22], constrained shortest
path problems [23], layer-packing problems [24], cost-sensitive attribute
reduction [25], and MKPs [26].

In this work, a self-adaptive repair operator [27] concept with three
pseudo-utility ratios and a local search neighborhood mechanism are
introduced, and a novel PSO is proposed. The introduction of the third
pseudo-utility ratio into the self-adaptive check and repair operator
(SACRO) is inspired by the fact that the three different measures of
pseudo-utility ratios must produce different ratio rankings and lead to
various repairing results, thereby encouraging particles in PSO to explore
different solution regions. The proposed PSO algorithm is paralleled with
state-of-the-art PSO methods using the widely used MKP benchmarks
from the OR-Library [28].

This paper is structured as follows. The background of the PSO al-
gorithm is introduced in Section 2. The proposed three pseudo-utility
ratios self-adaptive repair mechanism, the local search neighborhood
mechanism, and the novel 3R-SACRO-PSO algorithm are presented in
Sections 3 and 4. A comparative study on the performances of the pro-
posed method based on test benchmarks is discussed in Section 5. The
conclusion is given in Section 6.

2. Background

2.1. Classic PSO

PSO is a population-based stochastic optimization technique that is
inspired by the metaphor of social interaction and communication, such as
theflocking of birds. Each particle represents a potential candidate solution
to the programmingmodel. In PSO, local and global searches are combined
to acquire high exploration efficiency. Initially, particles are randomly
located in the programming search region. In every iteration, each particle
moves by considering not only its best position but also the best position in
the swarm population. The first “best” value, designated pbest, is the best
result found by the particle. The other “best” value, designated gbest, is
utilized in PSO as the present best value achieved by any particle in the
whole swarm. After both “best” values are determined, the velocity and
position of particles are updated on the bases of Eqs. (4) and (5).

vtij ¼ w⋅vt�1
ij þ c1⋅RandðÞ⋅

�
pt�1
j � xt�1

ij

�
þ c2⋅RandðÞ⋅

�
gt�1
j � xt�1

ij

�
; (4)

and xtij ¼ xt�1
ij þ vtij; (5)

where vtij and xtij are the velocity and position of the ith particle at the tth
iteration; pt�1

j and gt�1
j are the pbest and gbest, respectively; Rand() is a

pseudo random number between [0, 1]; c1 and c2 are cognition learning
factor and social learning factor, respectively; and w is the inertia weight.

Shi and Eberhart [29] significantly improved the performance of PSO
using a linearly time-varying inertia weight. Their simulation and eval-
uation results illustrated that the proposed PSO converges quickly, and its
performance is more robust and insensitive to the population size. The
mathematical representation of their proposed method is expressed as

w ¼ ðwmax � wminÞ tmax � t
tmax

þ wmin: (6)

In addition to the time-varying inertia weight, Ratnweera et al. [30]
introduced time-varying acceleration coefficients (TVAC) in PSO for local
search navigation and convergence toward the global optima. The

simulation results demonstrated that TVACs improve global exploration
during the early part of search and boost the solutions to converge to the
global best position at the end of the optimization. TVACs can be defined
and formulated as

c1 ¼
�
c1f � c1i

� t � 1
tmax

þ c1i; (7)

c2 ¼
�
c2f � c2i

� t � 1
tmax

þ c2i: (8)

To solve MKPs, Chih et al. [26] introduced time-varying inertia
weight and learning factors driven by uniform random number and
chaotic logistic map, respectively, into their proposed PSO algorithms.
The composite velocity updating function can be formulated as

vtij ¼ w⋅vt�1
ij þ

��
c1f � c1i

� t � 1
tmax

þ c1i

�
⋅RandðÞ⋅

�
pt�1
j � xt�1

ij

�

þ
��

c2f � c2i
� t � 1
tmax

þ c2i

�
⋅RandðÞ⋅

�
gt�1
j � xt�1

ij

�
:

(9)

2.2. Binary PSO

PSO was initially developed to optimize continuous functions where
velocity and position are formulated as real-valued numbers. Hence, the
major drawback of utilizing a PSO in real-world applications is its
continuous nature. That is, it cannot cope with a binary constrained
optimization problem, such as MKPs. Consequently, Kennedy and Eber-
hart [15] designed the first discrete version of PSO, called BPSO, to
resolve its problem with binary variables. In BPSO, a particle is defined
by binary formulation, and velocity is formulated in terms of the prob-
ability that a binary decision variable will take a value of one. A sigmoid
function, which is shown in Eq. (10), is then utilized by BPSO to trans-
form all real-valued velocities to the interval [0, 1].

S
�
vtij
�
¼ 1

1þ exp
�� vtij

�; (10)

where SðvtijÞ denotes the probability of bit vtij taking the value of 1.
Given that the disadvantage observed with the sigmoid function is the

non-monotonic curve of the transforming probability density function of
a bit, the position update equation has been recently employed in the
BPSO [26,31]. The conception of the position update function is
straightforwardly obtained from the equation of PSO for continuous
position updating. If the lower and upper bounds for velocity are �Vmax

and Vmax, then the value of xt�1
ij þ vtij is limited within

(0� Vmax ¼ �Vmax) and (1þ Vmax) because xtij in Eq. (5) must be a binary
value of 0 or 1. Accordingly, the position update function can be
expressed as

xtij ¼
�
1; if Uð � Vmax; 1þ VmaxÞ< xt�1

ij þ vtij;
0 otherwise:

(11)

Given that Uð0;1Þ ¼ Uð�Vmax ;1þVmaxÞþVmax
ð1þ2VmaxÞ ; thus, Eq. (11) can be

rewritten as

xtij ¼

8><
>:

1; if Uð0; 1Þ< xt�1
ij þ vtij þ Vmax

1þ 2Vmax

0 otherwise:

(12)

whereUð0; 1Þ is a uniform variable within [0, 1], andUð�Vmax;1þ VmaxÞ
is a uniform variable within ½�Vmax;1þ Vmax�.

2.3. Check and repair operator for MKP

The MKP is a constrained combinatorial optimization problem. Thus,
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