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A B S T R A C T

Many complex systems in the real world evolve with time. These dynamic systems are often modeled by
ordinary differential equations in mathematics. The inverse problem of ordinary differential equations is to
convert the observed data of a physical system into a mathematical model in terms of ordinary differential
equations. Then the model may be used to predict the future behavior of the physical system being modeled.
Genetic programming has been taken as a solver of this inverse problem. Similar to genetic programming, gene
expression programming could do the same job since it has a similar ability of establishing the model of
ordinary differential systems. Nevertheless, such research is seldom studied before. This paper is one of the first
attempts to apply gene expression programming for solving the inverse problem of ordinary differential
equations. Based on a statistic observation of traditional gene expression programming, an improvement is
made in our algorithm, that is, genetic operators should act more often on the dominant part of genes than on
the recessive part. This may help maintain population diversity and also speed up the convergence of the
algorithm. Experiments show that this improved algorithm performs much better than genetic programming
and traditional gene expression programming in terms of running time and prediction precision.

1. Introduction

There are many complex systems or non-linear phenomena varying
with the time in the real world. Such systems are called dynamic
systems, including weather change, population increase, disease diffu-
sion and so on. In order to predict the development trend of such
dynamic systems, it is often required to establish their mathematical
models, that is, to establish the functional relationship or changing
trend among variables of the systems. It is difficult to find the
functional relations among variables in complicated changing pro-
cesses, but it is still possible to find out the change rate or differential
coefficients of some variables, and then to model them by ordinary
differential equations (ODEs). If there are more than one unknown
functions, we need to establish a group of ordinary differential
equations (ODEs). Through the ODEs model of a physical system, it
is possible to learn the development trend of the system and apply the
prediction in the real world.

The problem of converting observed data of a physical system into a
mathematical model in terms of differential equations is known as the
inverse problem [1,2] of differential equations [3–6]. For instance, if

we have previous data of a stock market, we may create an ODEs model
for the stock market using previous data and then predict the
development trend of the stock market. The inverse problem of
differential equations plays an important role in many areas from
scientific experiments to stock markets. However, given observed data,
it is not an easy task to create models of ODEs for complex dynamical
systems, because these problems are very complicated and usually
belong to non-linear systems, so it is difficult to determine the structure
of ODEs and parameters in ODEs in order to create a correct model.

In this paper, an improved Gene Expression Programming (GEP) is
put forward to solve the inverse problems of ordinary differential
equations. GEP is a kind of evolutionary algorithms based on genome
and phenomena and referred to the gene expression rule in the genetics
[7,8]. It intends to combine the advantages of both GP and GA [9].
Unlike GP where an individual is expressed in the form of a tree, an
individual in GEP is represented by the Isometric linear symbols. GEP
[10] has been successfully applied in problem solving [7], combinator-
ial optimization [11], real parameter optimization [12], evolving and
modeling the functional parameters [13], classification [14,15], event
selection in high energy physics [16].
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Choosing GEP is based on several reasons. First, an GEP algorithm
adopts a multi-gene structure, where each gene stands for an ODE and
each chromosome for a group of differential equations. This is different
from traditional algorithms in which an individual cannot be used to
represent a group of ODEs directly. Secondly, previous experiments
show that GEP algorithms have a better prediction effect in the shorter
time and its time cost is so stable that it is seldom influenced by the
complexity of dynamical systems. In addition, an improvement is made
in our GEP algorithm. It is more suitable for studying the inverse
problems of ordinary ODEs than the traditional ones because more
genetic operations are centered at the dominant segment of the gene and
fewer genetic operations are centered at the recessive segment [17].

The remainder of this paper is organized as follows: Section 2
introduces inverse problems of ODEs. Section 3 presents an improved
GEP algorithm for solving the inverse problems of ODEs. Section 4
gives computer experiment results. Section 5 concludes the whole
paper.

2. Inverse problems for ordinary differential equations

A dynamic system is represented by n correlated functions:
x t x t x t( ), ( ), …, ( )n1 2 where t denotes time. The system has a series of
observed data collected at times t t j t= + × Δj 0 , j m( = 0, 1, …, − 1),
where t0 represents the starting time, tΔ the time increment, and x t( )i j
the observed value of xi at the time tj. Write the observation data in a
matrix form:
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Denote
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where f t f x t x t x t tx( , ) = ( ( ), ( ), …, ( ), )j j n1 2 ( j = 1, 2, n…, ) is a composite
function of several elementary functions involving of x i n( = 1, …, )i
and t. Let denote the set of all possible composite functions.

A system of ordinary differential equations (ODEs) in the form of

dx t
dt
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can be written in the vector form

d t
dt
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The goal of the inverse problem of ODEs is to find a mathematical
model which is represented by a system of ODEs

d t
dt
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such that
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The above the matrix norm represents the difference between the
observed data and the corresponding values derived from the ODEs
model.

Then we may use the obtained ODEs (6) to predicate the future trend
of the system. The above problem is called the inverse problem of ODEs.

Different approaches have applied to solving the inverse pro-
blem of ODEs. Linear modeling, such as Autoregressive model,
Moving Average model, Auto- regressive Moving Average model,
are simple and popular [18–20]. However, there exist several
restrictions for linear models. Firstly, they are linear models so
that they can not represent non-linear dynamical systems.
Secondly, identification and estimation of linear models requires
strong mathematical knowledge and expertise, which often lacks in
practice. Finally, once a model is established, it is not easy to
constantly adjust the structure and parameters of the model based
on updated observation data.

Another simple modeling approach is to take a form of differential
equations which are pre-selected by experience, and then a numerical
method is used to determine the variables [21]. However, how to pre-
select the right differential equation model is a difficult task, especially
for the differential equations whose number of variables increases.

Evolutionary modeling [22–25] has been successfully used in
studying the inverse problems of ordinary differential equations.
Current evolutionary modeling are mainly based on Genetic
Programming [22,25–27] where an equation is represented in the
form of tree. A hybrid evolutionary methods are proposed for
evolving ODEs, for example, to predict small-time scale traffic
measurements data in [28], which uses tree model to evolve but its
speed is also slow. ECSID [29] found good models for linear
pendulum, non-linear pendulum with friction, coupled mass-
spring, and linear circuit. But the difference between model found
by ECSID and original model becomes large when the model
becomes complex. GEP-SWPM is proposed in [30], and the
prediction is based on several generations of data before, so it is
seriously affected by the noise. A new methods of GEP was
proposed in [13,31], which is very effective for identifying para-
meter functions. But it is based on the assumed model and doesn't
provide a common solution and it can't be extended to most
situations.

In this paper, we proposed an improved GEP algorithm for solving
the inverse problem of ODEs.

3. Improved GEP for the inverse problem of ODEs

3.1. Gene representation in GEP algorithm

The genetic codes of GEP is the isometric linear symbols (GEP
chromosome). Each chromosome can be composed of several genes.
GEP gene consists of a head and a tail, where the former may contain
both the functional symbols and termination symbols, while the latter
only has the terminal symbols. For example, * + − aQ* + aababbbaab is
a legal gene, of which, * stands for the multiplication operation, Q the
square root operation, the segment without underline belongs to the
head, while the underlined segment is the tail. Fig. 1 shows the
expression of the gene in the form of a tree.

For each problem, the length of the tail t is a function of the length
of the head h and the number of arguments of the function with the

Fig. 1. Expression tree 1.
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