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a  b  s  t  r  a  c  t

Travelling  salesman  problem  is  a  classical  combinatorial  optimization  problem.  Instances  of this  prob-
lem  have  been  used  as  benchmark  for  testing  the  performance  of many  proposals  of  discrete  optimizer
algorithms.  However,  the  hardness  or the  difficulty  degree  to solve  the instances  has  not  been  usually
addressed.  In  the  past  the  evaluation  of  the  difficulty  of  the instances  has  required  to  obtain  a  high-quality
solution,  ideally  the optimal  one.  However,  this  type  of  strategy  burdens  the  evaluation  with  large  pro-
cessing  times.  In  this  work,  diverse  indirect  measures  for evaluating  the hardness  to  solve  instances  of the
travelling  salesman  problem  are  proposed.  These  evaluations  are  inferred  from  the  spatial  attributes  of
previously  evaluated  instances,  and  later  correlated  with  the hardness  of  the  instances.  Finally,  where  a
significant  correlation  is  found,  a  linear  model  is built  and  linked  to a genetic  algorithm.  As  a  consequence
of  this  work,  mechanisms  for hardening  instances  of  travelling  salesman  problem  are  implemented.

© 2018  Published  by  Elsevier  B.V.

1. Introduction

Travelling salesman problem (TSP) is one of the most popular
problems in combinatorial optimization. The quest for searching
high-quality solutions to these problems has fostered the develop-
ment of ground-breaking evolutionary algorithms (see Blum [1] for
a review). In parallel numerous variants of TSP [3,2] are the result
of the search of difficult variants of the problem for stressing more
advanced heuristics and metaheuristics. TSP is an NP-hard prob-
lem [4], but it does not mean that all the instances have the same
difficulty.

In order to fairly evaluate the performance of heuristics and
metaheuristics when optimizing TSP instances, hardness ranks
about the TSP instances and mechanisms to increment their hard-
ness ought to be generated. With regards to the metrics to evaluate
the hardness of a particular instance, the existence of a phase tran-
sition in TSP is cited in [5]. This issue arises from the transformation
of the TSP into a binary decision problem under the question, can
an algorithm find a solution with a tour length less than l?. The phase
transition easy-hard-easy related with the difficulty to find a new
solution to a TSP instance with a shorter tour length is analysed.
Authors place this phase transition at l√

N · A
≈ 0.75, where N is the

number of cities, A the area covered by the cities and l the tour
length. Thus the parameter | l√

N ·  A
− 0.75| can be used as hardness

indicator of the difficulty to solve a TSP instance. Unfortunately this
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indicator requires to find the optimal or a quasi-optimal solution
of the instance.

The search of the optimal solutions of TSP instances is an inten-
sive computational task for very large instances. Therefore, it makes
difficult to frequently use it.

Starting from this work, the correlation between this hardness
indicator and the statistical distribution of three spatial attributes
of TSP instances is studied. They include the distribution of the nor-
malized areas generated from the Dirichlet tessellation, from the
Delaunay triangulation, and the distances between the cities of the
instance. The generation of this relationship allows evaluating the
hardness of a TSP instances without calculating the optimal tour,
and therefore processing time can be saved.

In detail the proposed methodology is as follows. Initially the
histogram of the normalized areas generated from the applica-
tion of the Dirichlet tessellation to the TSP instances is fitted to
a Weibull probability distribution. From this adjustment, the two
parameters of this distribution can be extracted: shape and scale.
Then, the correlation between the hardness of the instances and the
shape parameter is analysed. Independently, this procedure is also
repeated for the normalized areas generated from the Delaunay tri-
angulation, and the distances between the cities of each instance. In
the cases where a high correlation is found, it is used for establishing
a model between both variables.

Furthermore, this relationship, expressed as a linear equation,
can be easily linked to an evolutionary algorithm aimed at gen-
erating hard-to-solve instances. In this work, this possibility is
tested through a genetic algorithm. From randomly-generated TSP
instances of 100 cities in a squared area of length 200 in arbitrary
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units, the genetic algorithm makes evolve them. At each genera-
tion, the instances are crossed and mutated, and those with larger
hardness indicator, lower fitness, are promoted to the next genera-
tion. The final result is a set of hard-to-solve TSP instances. Only the
best individual of each run is retained for constructing a catalogue
of hard-to-solve TSP instances.

As a consequence of this effort, a mechanism for hardening
instances of TSP, in a way that randomly-generated instances can
evolve until obtaining arbitrary hard instances, is proposed. The
motivation behind this work is to be capable of generating very
large TSP instances with the hardness required for benchmarking
ground-breaking discrete optimizers.

To the author’s knowledge, no similar works aimed at increasing
the hardness of TSP instances have been presented and analysed.

The rest of the paper is organized as follows: Section 2 sum-
marizes related work and previous efforts done in this area. The
theoretical foundations of the travelling salesman problem are
outlined in Section 3.1. A study of the hardness of instances of
TSP is presented in Section 3.2. The basic concepts of the Weibull
probability distribution are described in Section 3.3. The Dirichlet
tessellation and the Delaunay triangulation are presented in Sec-
tion 3.4. The software and hardware used is described in Section 3.5.
Results are presented and analysed in Section 4. Finally, Section 5
contains the conclusions of this work.

2. Related work

From the historical point of view, in [6] two  algorithms for
solving TSP are presented. This work uses as benchmark two  TSP
instances with 13 cities and 9 cities respectively. Comparing with
the current problem sizes, these tiny problem sizes are revealing
how the capacity to produce high-quality solutions has evolved,
and therefore, the need of a set of hard TSP instances to fairly eval-
uate the ground-breaking heuristics and metaheuristics. For a more
complete review of the problem, the reader is referred to [3,2] for
more information.

In [7], the objective is to predict the relationships between the
performance of algorithms and the critical features of instances. The
paper provides a methodology to discern if the metadata is suffi-
cient for predicting the behaviour of the instances, easy or hard.
In this work, the experimental set-up is composed of instances of
100 randomly-generated cities in a squared area of 400 units. The
TSP instances are evolved using an evolutionary algorithm, par-
ticularly a genetic algorithm: new instances are created by using
uniform crossover and mutation. The criterion for classifying as
easy or as hard the instances is based on the effort done by two
Lin–Kernighan heuristic methods [8] to solve the TSP instance:
chained Lin–Kernighan [9] and Lin–Kernighan with cluster com-
pensation [10].

In [11] a major revision and extension of [7] is done by extend-
ing the methodology to the most popular combinational problems:
assignment problem, knapsack problem, bin-packing problem,
graph problem timetabling and constraint satisfaction.

Beyond the TSP, the existence of phase transition for the
NP-complete problems, between regions where the problem is gen-
erally easy to solve to other regions where the problem is generally
much more difficult to solve, is widely presented in [12–15].

In [16] a study about the capacity to predict the hardness of TSP
instances, as defined in [5], from attributes arisen from the sta-
tistical distribution of the distance between the cities, the areas
generated from the Dirichlet tessellation, and the areas from the
Delaunay triangulation is undertaken. These attributes include the
minimum and maximum sizes, the mean, variance, skewness and
kurtosis of the distribution of the normalized areas from the Dirich-
let tessellation, and the areas from the Delaunay triangulation.

The same information from the Euclidean distance between the
cities is also used as attributes for the hardness classification of the
instances. Random Forests is used for classifying TSP instances in
hard- or easy-to solve through spatial features [17].

In [18], efforts for finding additional mechanisms for evaluat-
ing the intrinsic hardness of the TSP instances can be found. In this
work, the instances are evaluated only in the nearby of the opti-
mal  solution by applying random walk to study the gradient of the
fitness landscape around the optimal position.

3. Methodology

3.1. Travelling salesman problem

The TSP can be expressed as shown in Eqs. (1) and (2).

xij =
{

1 the path goes from city i to city j

0 otherwise
(1)

where xij = 1 if city i is connected with city j, and xij = 0 otherwise.
For i = 0, . . .,  n, let ui be an artificial variable, and finally take cij

to be the distance from city i to city j. Then TSP can be written as
shown in Eq. (2).

min
n∑
i=0

n∑
j /= i,j=0

cijxij

0 ≤ xij ≤ 1 i, j = 0, . . .,  n

ui ∈ Z i = 0, . . .,  n

n∑
i=0,i /= j

xij = 1 j = 0, . . .,  n

n∑
j=0,j /=  i

xij = 1 i = 0, . . .,  n

ui − uj + nxij ≤ n − 1 1 ≤ i /= j ≤ n

(2)

The purpose of TSP is to find the shortest tour between a set of
cities. In the symmetric version of TSP — variant used in this work
—, the cost of joining two cities does not depend on the departure
city, only on the pair of cities.

The TSP instances used as benchmarks in this work have
been extracted from http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/. Among the instances published in this site, those with
optimal solution have been selected. Besides, several instances are
selected under the criterion of having 100 cities. This allows a
study of the difficulty of instances of equal size. Other instances are
selected under the criterion of having a number of cities slightly
lower or larger than 100, to facilitate the mapping of the diffi-
culty in function of the number of cities. Instances varying more
than two  orders of magnitude in relation with the smallest one
have been skipped. Hence, efforts to evaluate the difficulty relative
among instances which encompass from tens to hundreds of cities
are done.

The list of TSP instances includes: ulysses16, ulysses22, bays29,
att48, eil51, berlin52, st70, eil76, gr96, kroA100, kroC100, kroD100,
rd100, eil101, gr120, ch130, ch150, gr202, pa561 and gr666. The
figure in the names indicates the number of cities conforming the
TSP instance. With this selection of TSP instances, it is expected
to cover a wide range of cases, and therefore, different difficulty
instances are evaluated.

3.2. Easy-hard-easy phase transition

In [5], for Euclidean TSP instances in the plane the existence of a
phase transition — easy-hard-easy — for the TSP decision problem
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