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a  b  s  t  r  a  c  t

In this  paper,  we  propose  to approximately  solve  the  robust  vehicle  routing  problem  with  a  population-
based  method.  Uncertainty  can  be  modeled  by a set of scenarios  where  each  scenario  may  represent  the
travel  costs  assigned  to  all visited  arcs  of the  graph  associated  to the  problem.  Unlike  several  existing
methods  that  often  aggregate  multiple  objectives  into  a compromise  function,  the goal  of the  proposed
approach  is  to simultaneously  optimize  both  the  number  of vehicles  to  use  and  the  worst  total  travel
cost  needed.  The  proposed  method  can  be  viewed  as a  new  version  of  an  evolutionary  approach  which
is  reinforced  with  a “strong-diversification”.  Such  a strategy  is based  upon  destroying  and  re-building
procedures  that  are  hybridized  with  a  local  search  using  a series  of  move  operators.  A number  of exper-
iments  have  been  conducted  to assess  the  performance  of the  proposed  approach.  Its  achieved  results
have  been  tested  on benchmark  instances  extracted  from  the  literature  and  compared  to those  reached
by  the-state-of-the-art  GLPK  solver  and  one  of  the  most  recent  method  available  in  the  literature.  The
proposed  method  remains  competitive,  where  encouraging  results  have  been  obtained.

©  2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In many real-world applications, some parameters tend to be
unknown or uncertain in nature. Making decisions under uncer-
tainty is encountered in numerous domains such as transportation,
logistics, telecommunication, reliability and production manage-
ment. In fact, in some of these cases, most derived problems assume
that the parameters are deterministic constants whereas these
parameters are generally unknown. Their declared values are very
coarse approximations and in such cases, finding a single solution
to the problem becomes insufficient. Despite the recent technologi-
cal progress, tackling several combinatorial optimization problems
with uncertainty parameters remains a challenging topic.

The Vehicle Routing Problem (VRP) is a good candidate belong-
ing to the transportation family where uncertainties can often arise
on the travel costs linking two customers belonging to a route
served by a vehicle. It can also be viewed as one of the most impor-
tant studied problems in the field of combinatorial optimization,
where its objective is to find routes for serving customers with a set
of vehicles with limited capacity. These routes start from the depot
to serve a number of dispersed customers in a scattered area, then
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return to the depot. Furthermore, each customer is visited once
by only one vehicle, and that the accumulated loads in each route
does not exceed the vehicle capacity. Whenever the travel costs
between each couple of customers is considered as random, then
each travel cost can be characterized by a set of discrete values. Dif-
ferently stated, one tries to determine a “good” final solution that
satisfies all scenarios or the most of the scenarios considered. The
resulting problem is known as the Robust VRP (RVRP) (cf. Solano
et al. [22]).

Herein, the travel time is represented by a set of scenarios, where
each scenario denotes a potential value of the travel time required
by a vehicle for following a route. A solution is said to be robust,
if it is qualified according to a given robust criterion. Note that, a
robust criterion is often represented by an objective function and
searching for the best solution according to a robust criterion is
equivalent to achieve the best solution optimizing the objective
function related to the robust criterion. The robust criteria elabo-
rated in the literature are generally based on the preferential unit
risk. Furthermore, other robust criteria have been considered in the
literature, like the best case criterion, the worst case criterion (cf.,
Solano-Charris et al. [22]) and the min-max deviation criterion (cf.,
Aissi et al. [11]).

Because of the presence of multiple objectives, the expected
result for such optimization problems is often a set of optimal solu-
tions that are known as the set of Pareto optimal solutions. Many
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solution methods are available in the literature for tackling multi-
ple objective problems. Among these solution methods, they can
be classified into two main categories: Pareto methods and numer-
ical methods. A Pareto method compares two solutions according
to the concept of the non-dominated solutions whereas a numeri-
cal method is based upon the aggregation principle, like weighted
linear aggregation. Differently stated, the first method evaluates
the solutions and compare their qualities according to the princi-
ple of the non-dominance while the second method tries to build
a single objective function and solves the resulting problem as a
mono-objective optimization problem. The Non-dominated Sort-
ing Genetic Algorithm-II (NSGA-II) (cf. Deb et al. [7]) tries to mimic
the Pareto method, which (i) applies the priority of non-dominated
solutions with greater evaluation (fitness) and (ii) assigns the non-
dominated solutions to different fronts. In this case, the aim of the
non-dominated fronts is to classify the set of solutions according to
their ranks and so, to create the diversity in the Pareto solutions.

This paper proposes an evolutionary multi-objective
optimization-based approach for tackling the vehicle routing
problem with uncertain travel cost (RVRP). The proposed method
can be viewed as an extended version of the approach presented
in Bederina and Hifi [3], where the non-dominated sorting genetic
algorithm-II combined with destroying and rebuilding strategies
are employed and hybridized with a local search procedure for
trying to enhance the quality of the solutions.

The remainder of the paper is organized as follows. The litera-
ture review on the vehicle routing problem and some of its variants
is given in Section 2. The presentation and the model used for the
problem is described in Section 3.1; that is a model on min-max
VRP. Section 3.3 summarizes the non-dominated sorting genetic
algorithm-II and the adaptation proposed for the robust VRP. In Sec-
tion 3.5, the local strategies based operators are described, which
are used in order to intensify the search process. The performance of
the proposed method is evaluated in Section 5, where its obtained
results are argued and compared to those reached by recent algo-
rithms available in the literature. Finally, Section 6 summarizes the
contribution of the paper.

2. Related work

The VRP is one of the most important combinatorial optimiza-
tion problems. It was first proposed by Dantzig and Ramser [6]
under the name “track dispatching problem”. Given a set of cus-
tomers with known demands, VRP tries to determine routes with
minimum total cost starting and ending at the depot, where a
number of identical vehicles with fixed capacity is used. It can be
encountered in numerous applications including distribution man-
agement, scheduling, transportation, communications, network
design and logistics. Depending on different needs and different
fields, many variants of the VRP were studied in the literature. These
variants either introduce new constraints or modify some assump-
tions on the basic VRP problem. Among these variants: multiple
depots, multi-period horizons, with split delivery and other ver-
sions have been tackled (a survey on the VRP and its variants may
be found in Kumar and Panneerselvam [13]).

As the exact algorithms are still limited to small-sized instances,
heuristics and metaheuristics seems to be a good candidate. Meta-
heuristics can be considered as one of the most used approaches for
solving all types of VRP problem. From 1990’s to 2000’s, the tabu
search was proven in Laporte et al. [15] to be the most successful
method compared to some classical heuristics like the Clarke and
Wright savings developed in Clarke and Wright [5] and an intu-
itive procedure proposed by Gillett and Miller [10], where it solved
medium-sized instances to optimality (or near-optimality).

During the last decade, evolutionary algorithms were inten-
sively used for tackling the VRP. For instance, the genetic algorithm
is one of the evolutionary algorithms that was successfully imple-
mented and tested either for VRP or RVRP. Among the best
implementations of such an approach are those proposed by Prins
[20] and Baker and Ayechew [1]. A simulated annealing has been
also investigated for tackling a hybrid VRP (cf. Yua et al. [24]). Due
to the slowness of evolutionary algorithms, they are generally com-
bined with some local moves (hybrid evolutionary algorithms) in
order to accelerate the convergence towards local or global optima.

Furthermore, the existing approaches for the VRP often aggre-
gate several objectives and constraints. The aggregation usually
does not optimize all the existing objectives at the same time, there-
fore an objective may  be less considered than another one. In some
cases, the multi-objective optimization seems to be more effective,
because all objectives are simultaneously optimized, therefore no
objective is favored over another.

In Jozefowiez et al. [12], the authors proposed a multi-objective
variant of the basic VRP problem by optimizing the travel cost
and the route balance. The majority of multi-objective approaches
available in the literature solve the VRP with time windows variant.
Some of them optimizes the travel cost and the number of vehicles
simultaneously, like the method proposed in Tan et al. [23], where
a hybrid multi-objective evolutionary algorithm was  developed,
Ombuki et al.’s [19] genetic algorithm with Pareto ranking, Gho-
seiri et al.’s [9] genetic algorithm with goal programming, Nahum
et al.’s [18] artificial bee colony algorithm and Minocha et al.’s [16]
multi-objective hybrid genetic algorithm.

Beside optimizing the number of vehicles and the travel cost,
Gacia et al. [8] optimized the total delivery time using a MOEA in
addition to similarity measurement and Kumar et al. [14] consid-
ered the route balance using fitness aggregated GA.

In other works, a variety of multi-objective optimization prob-
lems have been tackled in the literature. The dynamic flexible job
shop problem has been studied in Shen and Yao [21], the multi-
objective VRP with time windows, by optimizing the travel cost,
has been studied in Müller [17] and, the workload imbalance was
used in Baños et al. [2], where the multiple temperature Pareto sim-
ulated annealing was  considered. Finally, the multi-objective VRP
with uncertainty was studied in Jozefowiez et al. [12], where both
travel cost and route balance were optimized.

3. Tackling the robust vehicle routing problem

3.1. VRP problem formulation

Let G = (V, E) be a complete graph, where V represents a set of n
nodes, node 0 represents the depot and the other nodes i, i ∈ N = {1,
. . .,  n}, represent the customers. Each customer i ∈ N is character-
ized by a quantity ci of goods/demands to be delivered, there are
at most m identical vehicles with a capacity C and E denotes a set
of arcs with non-negative travel time tij. The goal of the VRP is to
determine a list of feasible routings serving all customers with a
minimum travel distance and by using a minimum number of vehi-
cles. In what follows, D(.) is used for representing the travel cost of
a route R or the total travel cost of a list of routes LR.  In this case,
the travel cost D(LR) is equivalent to the first objective. Formally,
the VRP can be stated as follows (cf., Toth and Vigo [20]):

ILPvrp:

min  (
∑

∀R ∈ LR

D(R), m)

s.t.
n∑

i=1

x0i =
n∑

i=1

xi0 ≤ m

(1)
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