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a  b  s  t  r  a  c  t

Evolutionary  algorithms  have  been  successfully  applied  in  dealing  with multi-objective  optimization
problems  with  two  or three  objectives.  However,  when  solving  the  problem  with  more  than  3 objectives
(also  called  as many-objective  optimizing  problem),  most  multi-objective  evolutionary  algorithms  per-
form poorly  due  to  the  ineffectiveness  of  Pareto  dominance  relationship  in  a high-dimensional  space,
and  the  diversity  maintenance  mechanism  usually  leads  the  population  to  be far  from  the  true Pareto
front.  In  this  paper,  a novel  approach  is  proposed  to handle  the  challenges  in  the many-objective  opti-
mization  problem.  Firstly,  a grid-based  approach  is adopted  to  eliminate  dominance  resistant  solutions
which  are  non-dominated  solutions  with  excellent  diversity  while  incur  the  dominance  resistance  and
lead  the  population  far from  the true Pareto  front.  Secondly,  a new  diversity  maintenance  mechanism
based  on  reference  directions  is  proposed,  which  not  only  enhances  the  diversity  but  also  takes  the  con-
vergence  into  consideration.  For  a domination-  relationship  based  MOEA  hardly  has  enough  convergence
capability  for  a high-dimension  optimizing  problem,  our  approach  embeds  convergence  capability  into
the diversity  maintenance  process,  and  balances  the  convergence  and  diversity  capability  according  to
evolutionary  states  and  Pareto  entropy.  The  proposed  algorithm  is evaluated  on  a  number  of  standard
benchmark  functions,  i.e.,  DTLZ1-7  and  WFG1-9  with  3-,  4-,  5-,  8-,  10-objective  and  compared  with  5
state-of-the-art  Many-Objective  Evolutionary  Algorithms  (MaOEAs).  Experimental  results  demonstrate
the  proposed  algorithm’s  competitiveness  in  both  convergence  and  diversity  in  solving  Many-Objective
Optimization  Problems.

© 2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Over the past decades, Multi-Objective Evolutionary Algorithms
(MOEAs) have amply shown their optimizing capacity in handling
multi-objective problems with two or three conflicting objectives
in various applications. They could find a set of well converged
and diversified non-dominated solutions in a short time because
the algorithms have the ability to reduce the computational com-
plexity tremendously [1–5]. Domination relationship based MOEAs
are the most common methods to obtain a Pareto approxima-
tion set with well diversity, such as NSGA-II (Non-dominated
Sorting Genetic Algorithm-II) [1], MOPSO (Multi-Objective Parti-
cle Swarm Optimization) [5] and so on. However, latest researches
have demonstrated that these MOEAs fail to solve optimization
problems with more than 3 objectives [6–10], which is called
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Many-Objective Optimization Problems (MaOP). The main reason
that domination relationship based MOEAs could not handle MaOP
is that the dominated-based ranking methods lose their Pareto
optimality and searching capability to compare many- objective
solutions. The number of non-dominated solutions dramatically
increases with the increase of objective number, which leads to the
indiscrimination among those non-dominated solutions. In addi-
tion, the number of dominance resistant solutions (DRSs) [7,11,12]
which have nearly optimal values in one or two  objectives but poor
values in the rest objectives, grows as the number of objectives
increases. The DRSs are usually well diversified and the crowd-
ing distance sorting is unable to eliminate them out of population,
but they will incur dominant resistance and deteriorate algo-
rithm’s search ability and hinder the population moving toward
the true Pareto front. Secondly, a diversity-preservation method
(such as the crowding distance sorting) hardly ensures the diver-
sity of population with an increased number of objectives, which
is fond of preserving those marginal solutions (e.g. DRSs). Thirdly,
a MOEA usually pursues two goals: minimizing the distance to the
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Pareto front (convergence) and maximizing the distribution over
the Pareto front (diversity), and adaptively adjusting the search
direction between the two goals is very important for the perfor-
mance of an evolutionary algorithm [13,14]. With the search space
being exponentially tremendous, how to balance the convergence
and diversity in a many-objective optimization evolutionary algo-
rithm is getting more and more essential. Fourthly, even though
not directly related to the optimization ability, it is very difficult
for many-objective problems to present a high- dimensional trade-
off front but visualization of a high-dimensional population in the
evolution process could help us to exploit population states and
facilitate the design of many-objective evolutionary algorithms.

The main contribution of our paper is twofold:

1) A grid-based approach is proposed to eliminate dominance
resistant solutions (DRSs) in the first selection level for
domination-based evolutionary algorithm. DRSs are non-
dominated solutions with excellent values in one or two
objectives but with poor values in the others. The number of
DRSs grows as the number of objectives increases, and DRSs
usually occupy a big proportion of population when using
domination relationship based MOEA to solve MaOP. Because
DRSs are non-dominated solutions with excellent diversity, the
dominated-based ranking and crowding distance sorting will
preserve them in the population. But these solutions could incur
dominance resistance and take the population away from the
true Pareto front, which deteriorates algorithm’s convergence.
How to eliminate DRSs is seldom investigated and Grid Rank-
ing (GR) based method is applied to handle this issue in this
paper. Experiments show that convergence of the algorithm is
improved while comparable diversity is maintained with a cer-
tain elimination ratio.

2) Two different Euclidean distances to balance convergence and
diversity based on the Pareto entropy are proposed in the sec-
ond level selection. Different from previous works, our approach
embeds convergence capacity into the diversity maintenance
process. The first level selection of non-dominated ranking
could hardly meet the requirement of convergence for MaOP,
so the proposed algorithm combines convergence and diversity
in the second level selection and balances them based on Pareto
entropy. Experiments also demonstrate that introducing con-
vergence capacity into second level selection is necessary for
MOEAs solving MaOPs.

The remainder of this paper is organized as follows: Section 2
first discusses the evolutionary methodologies for Many-Objective
problems and presents a review of related works on Multi-
Objective Evolutionary Algorithm (MOEA) for MaOPs in the next
section. In the Section 3, some definitions and notations used in
this paper are given, and the framework and details of our proposed
Reference Direction and Entropy based Many-Objective Evolution-
ary Algorithm (RDE-MaOEA) are described in Section 4. Section 5
describes the experimental design and presents empirical results of
the proposed approach on benchmark problems compared with 5
state-of-the-art MaOEAs. We  conclude the paper with a discussion
and a description of future work in Section 6.

2. Related work

Generally speaking, many-objective optimization problem is
very similar to multi-objective optimization problem only except
with four or more objectives to be optimized simultaneously. How-
ever, it brings some new difficulties when the number of optimizing
objectives exceeds 3, and the most obvious problem is that the
Pareto-optimal front obtained by algorithms could not be visual-

ized by graphical means. It has been discussed in the above section
and some previous works [12,15,16] that using the evolutionary
algorithm to solve many-objective problems may  face following
difficulties:

(1) Dominated-based ranking methods lose their Pareto optimality
capability to compare many-objective solutions when the num-
ber of non-dominated solutions in a population dramatically
increases with objective number, which leads to the indiscrim-
ination among those non-dominated solutions.

(2) The domination resistant solutions (DRSs) take a larger propor-
tion of population which will hinder the population toward the
true Pareto front.

(3) It is increasingly difficult to balance the convergence and
diversity of Pareto solutions in a many-objective optimization
evolutionary algorithm.

(4) Visualization is hard to achieve through graphical means.

Although the evolutionary multi-objective algorithms face the
above difficulties when they are applied in Many-Objective Opti-
mization Problems (MaOPs), some existing MOEAs are still helpful
in finding an acceptable Pareto front for MaOPs through specific
techniques. Four common and useful strategies to alleviate the
above difficulties will be introduced here.

2.1. A special domination principle

This method uses a special domination principle to push the
population toward the true Pareto front [14,17–19]. Grid-based
domination techniques have been widely studied and applied in
the evolutionary algorithm [14,20]. Knowles and Corne [20] firstly
introduced the grid into MOEAs to maintain the diversity of Pareto
set. The crowding degree of an individual is calculated by the num-
ber of individuals in the same grid location. And the algorithm will
select the one with lower crowding degree into the population
when two  individuals have the same domination rank. A grid-
based evolutionary algorithm is proposed in paper [14] for solving
Many-Objective Problems. It not only uses the grid to improve the
diversity of population, but also introduces grid-based domination
to strengthen the selection pressure toward the true Pareto set. Grid
ranking (GR) and grid crowding distance (GCD) are introduced to
determine the convergence and diversity of individuals in a grid
environment. GR is a convergence estimator to rank individuals
based on their grid locations, and it aggregates convergence per-
formances of all objectives for an individual. GCD is also calculated
by the number of individuals with the same grid location as in [14].

�-MOEA [17] adopts another type of dominance relationship–�-
domination to handle problems in the evolution. In the
�-domination, the algorithms control the dominance degree by
changing the size of � which is used to divide the objective space
into hyperboxes, and each hyperbox will be associated with only
one individual. The �-domination could also be seen as a grid-based
MOEA. Paper [21] developed an adaptive �-dominance based MOEA
to address the problem that the boundary individuals may  be lost
in the evolutionary process.

2.2. Decomposition-based MOEAs

This method adopts a simple idea which decomposes a MaOP
into multiple scalar single-objective subproblems and optimizes
them simultaneously. Instead of using the Pareto dominance, it
generates multiple predefined weight vectors for aggregating all
objectives as one and pushes the population to the true Pareto front.
Each subproblem is assigned with a weight vector, and it evolves by
using only the information from its several nearest neighbors which
are measured by the Euclidean distance between their weight vec-
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