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a  b  s  t  r  a  c  t

The  topology  of  a network  is  crucial  to  its  function  and  behavior.  In many  cases,  various  data  are  obtained
from  the  network,  for example,  information  spreading  data,  gene  expression  microarray  data,  game
data, but  the  topology  of the  network  is unknown.  Reconstructing  the  topology  of  the  network  from  the
observed  data  is meaningful  in many  applications.  In  this  paper  an evolutionary  algorithm  is  proposed
for  network  reconstruction  from  observed  game  data.  The  proposed  two-stage  evolutionary  algorithm
decomposes  the  network  reconstruction  problem  as sequentially  reconstructing  the edges  of  the  nodes.
The  edges  of  a node  are described  by  the corresponding  column  vector  of the  network  adjacency  matrix.
In the  first  stage,  possible  vectors  are  obtained  from  the  proposed  genetic  algorithm.  In  the  second  stage,
the true  vector  is  obtained  by the  proposed  heuristic  local  search.  Both  analyses  and  experiments  show
that  the  proposed  evolutionary  algorithm  is  more  accurate  and  applicable  in  more  general  cases  than  the
algorithm  based  on  compressive  sensing  theory.

© 2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Knowing the topology of a network is fundamental for under-
standing its function and behavior [1]. Usually, various phenomena
on a network are observed and data are obtained, but the topology is
unknown. Network reconstruction aims at inferring the topology
from observed data, for instance, inferring the topology of cellu-
lar gene, protein, and metabolite networks from gene expression
data [2,3], inferring the topology of gene-regulatory networks from
knock-out data [4,5], and inferring the topology of networks from
dynamics [6,7], noise [8,9], or game data [10].

The data are usually records of measurements or observations
about the actions or events being occurred in the network in many
time points. Network reconstruction usually involves solving deter-
mined or underdetermined system of first-order equations (see
Section 2) [11–13]. With different data, the parameters of the equa-
tions may  be different, but their mechanisms are similar. Among
various data on networks, a representative is the game data [10].
The phenomena of game on networks are common in many fields,
ranging from biology and behavioral science to economics [14]. If
a node represents an agent (or a player), an edge (or a link) rep-
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resents the connections between two  nodes interacting with each
other by game rules (e.g., the prisoner’s dilemma game), the payoffs
and the strategies of the nodes are the game data. If an algorithm
for network reconstruction is developed with game data, it can be
extended or modified to be applicable in various data in different
research fields, e.g., system biology and social science. Furthermore,
game data can be easily generated according to game theory, and
thus they can act as benchmark data for network reconstruction.

Assuming that the network is sparse, many heuristic methods
for network reconstruction using different data have been proposed
in the fields of system biology and complex networks in recent
years [10–12,15]. They include, for example, singular value decom-
position (SVD) based methods [11,16] and time-varying dynamic
Bayesian network (TV-DBN) method for gene expression data [12],
and compressive sensing (CS) based methods for game data [10,15].

The CS theory has been developed in the fields of computer sci-
ence and signal processing in recent years [17–19], which provides
an efficient way  in sensing and reconstructing sparse signals in a
compressed form. Assuming the edges of networks are sparse, the
CS method for reconstructing networks from game data was  pro-
posed in [10]. Indeed, many real world networks are sparse, but
more networks are not sparse—they are even dense [20]. A heuris-
tic stochastic searching technique, e.g., an evolutionary algorithm
(EA), may  be more appropriate for reconstructing the topology of
a network (see the analysis in Section 3). Population-based EAs
mimic  the evolutionary phenomena in nature, which are stochastic
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global optimization methods to complicated problems, especially
for those without a heuristic method or satisfactory results. EAs
have been used in a wide area of practical problems, e.g., multi-
objective optimization [21–24], combinatorial optimization [25],
numerical optimization [26], flowshop scheduling problem [27],
graph coloring [28], resource allocation [29], and other applica-
tions [30–32]. For more comprehensive discussions about various
applications of EAs, refer to [33].

Based on the fuzzy cognitive map, EAs have been designed
for reconstructing gene regulatory networks [34,35]. This paper
attempts to tackle the general network reconstruction problems
with an EA. Without assuming that the network is sparse, a two-
stage algorithm (TSA) for network reconstruction from observed
game data is proposed. The framework of the TSA is a genetic
algorithm (GA, first stage) followed by a heuristic local search (LS,
second stage). Possible vectors which satisfy one or more rounds
of game data are obtained by the GA in the first stage and then the
degree of each node is estimated. The proposed LS reconstructs the
edges of nodes sequentially in an increasing order of the degree in
the second stage.

Hybrid evolutionary algorithms (HEAs) emphasize hybridiza-
tion of EAs with other methods using problem-specific knowledge,
e.g., machine learning techniques and heuristics [36–39]. The HEAs
are also named memetic algorithms in some literatures [36,37].
HEAs usually have an iterative framework “EA+LS”: the same pro-
cess of “EA+LS” is repeated many times [40–42]. The framework of
the proposed TSA is not the same as that of the HEA. The GA of our
TSA is separated from the LS, though the GA (LS) itself needs to be
repeated many times.

Usually in an EA, an individual of the population is a candidate of
the solution for the problem. For the network reconstruction prob-
lem, a candidate solution is an adjacency matrix which describes
the topology of the network. Following this direction, the search
space is N × N dimensions, where N is the number of nodes in the
network. Instead of reconstructing the topology of the network as
a whole, the proposed TSA reconstructs the edges of nodes one
by one, which reduces the search space to N dimensions. Specifi-
cally, possible vectors of each node are obtained one by one in the
GA stage; in the LS stage, the edges of the node with the smallest
degree will be reconstructed first, and then the node with the small-
est un-reconstructed degree among the rest will be handled. This
decomposition dramatically reduces the complexity of the problem
(see Sections 5.2 and 5.4). The edges of a node are described by the
corresponding column vector of the adjacency matrix, so the pro-
posed crossover and LS operations (of the TSA) act on the columns
of the matrix instead of the entire matrix directly.

The problem-specific knowledge may  differ with different types
of data. The proposed TSA deals with the prisoner’s dilemma game
(PDG) data on the network. Based on the game equation of the
PDG (see Section 2), the LS and crossover operators of the proposed
TSA are defined (see Sections 4 and 5). From the crossover opera-
tion, one or more possible vectors which satisfy one or more game
equations can be obtained, then from the LS in the corresponding
solution sub-space, the true vectors which describe the edges of the
nodes are obtained.

This paper has three major contributions: (a) a method for
reconstructing general (non-sparse) networks; (b) analyzing the
problem-specific knowledge; (c) a two-stage framework for the
problem of network reconstruction (GA followed by LS).

This paper is organized as follows. Section 2 formulates the
problem. Section 3 analyzes the problem-specific knowledge (solu-
tion space of the problem). Section 4 describes the proposed LS.
The details of the proposed TSA are described in Section 5, which
includes details of the GA. Simulation results are shown in Section
6. Section 7 concludes the paper.

2. Problem formulation

In the PDG, each of the two  players has two options: Cooperate
(C) and Defect (D) [14,43]. If both players cooperate, both obtain
R points of payoff; if both players defect, both receive P points; if
one cooperates and the other defects, the cooperator receives the
lowest payoff S and the defector obtains the highest payoff T. The
payoffs usually satisfy T > R > P > S, which guarantees that the Nash
equilibrium of the game is mutual defection, and 2R > T + S makes
mutual cooperation the globally best outcome [43,44]. The payoff
matrix of the PDG is shown as follows [14,43].

C D

C (R, R) (S, T)
D  (T, S) (P, P)

For the convenience of representation, the following matrix PM

is used, which is also called payoff matrix in cases without confu-
sion:

PM =
(
R S

T P

)
, (1)

where subscript “M” stands for matrix. Let Si(C) = (1, 0)T and
Si(D) = (0, 1)T represent that node i is a cooperator and defector
respectively. If nodes i and j are connected, indicating that inter-
action exists between them, then the payoff node i obtained by
gaming with node j is

fij = STi PMSj. (2)

F = [fij] = [f T1  · , . . .,  f T
i  · , . . .,  f TN  · ]

T
is the network payoff matrix,

where fi· = (fi1, . . .,  fiN) is the ith row vector of matrix F. Obviously,
row vector fi· describes the payoffs that node i may obtain by gam-
ing with the remaining nodes. We  assume fii = 0, indicating that
node i does not interact with itself. The total payoff node i obtained
by gaming with its neighbors is

gi =
∑
j ∈ �i

fij, (3)

where �i is the set of nodes which are connected with node i.
Denote the 0–1 adjacency matrix of the network as A = [aij] =
[aT1 · , . . .,  aT

i · , . . .,  aTN · ], where aT
i · is the ith column vector of A. In A,

aij = 1 indicates that nodes i and j are connected; otherwise, aij = 0.
Obviously, the topology of the network is described by A, then from
(3),

gi = fi · aTi · , i = 1, . . ., N. (4)

The payoff of node i (gi in Eq. (4)) is available from game data and
fi· can be calculated from (2). If aT

i · , i = 1, . . .,  N, can be obtained
from (4), the adjacency matrix A is obtained and the network is
reconstructed.

Usually, given one round game data, gi ∈ R  and fi · ∈ RN , aT
i  ·

has many solutions. Matrix A cannot be uniquely determined. If K
rounds game data are available, the following K equations can be
obtained:

gi(1) = fi · (1)aT
i · ,

gi(2) = fi · (2)aT
i · ,

·  · ··  · ·
gi(K) = fi · (K)aT

i · ,

i = 1, . . .,  N,

(5)
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