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a  b  s  t  r  a  c  t

The  positional  inaccuracies  associated  with  the GPS/INS  measurements  make  the  terminal  phase  of the
normal  GPS/INS  landing  system  imprecise.  To  solve  this  problem,  an  adaptive  fuzzy  data  fusion  algorithm
is developed  to  obtain  more  accurate  state  estimates  while  the  vehicle  approaches  the  landing  surface.
This  algorithm  takes  the  translational  displacements  in  x and  y  from  the  mounted  Optical  Flow  (OF)
sensor  and fuses  them  with  the  INS  attitude  measurements  and the altimeter  measurements.  This  low
cost  adaptive  algorithm  can  be used  for vertical  landings  in  areas  where  GPS  outages  might  happen  or  in
GPS  denied  areas.  The  adaptation  is  governed  by imposing  appropriate  assumptions  under  which  the  filter
measurement  noise  matrix  R is predicted.  The  R matrix  is continuously  adjusted  through  a  fuzzy  inference
system  (FIS)  based  on the  Kalman  innovative  sequence  and  the  applied  covariance-matching  technique.
This  adaptive  fuzzy  Kalman  fusion  algorithm  (AFKF)  is  used  to  estimate  the  vehicle’s  states  while  landing
is  being  commanded.  AFKF  results  are  compared  with  these  obtained  using  a classical  Kalman  estimation
technique.  The  AFKF  algorithm  shows  better  states  estimates  than  its  conventional  counterpart  does.
Compared  to  prior  landing  systems,  the proposed  low  cost  AFKF  has  achieved  a  precision  landing  with
less  than  10  cm  maximum  estimated  position  error.  Real precision  landing  flights  were  conducted  to
demonstrate  the  validity  of  the  proposed  intelligent  estimation  method.

© 2018  Elsevier  B.V.  All  rights  reserved.

1. Introduction

A successful utilization of unmanned aerial Vertical Takeoff and
Landing (VTOL) vehicles in missions that require a high degree of
autonomy necessitates accurate and fast updated measurements
from the onboard navigational sensors [1,2]. For example, the qual-
ity of the Global Positioning System (GPS) becomes low when the
Unmanned Aerial Vehicle (UAV) is approaching the ground, and a
landing with few meters’ error might result. Therefore, the use of
other more precise sensors is needed for the development of the
sensor fusion design [3–6].
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Vision sensors have been employed in designing autonomous
landing systems in recent years due to their precision and high
update rate measurements [7,8]. A vision-based helicopter-landing
algorithm was  proposed in [9]. The study achieved a precise landing
with an average position error equal to 47 cm.  However, their solu-
tion is computationally heavy and ill-suited for vehicles that have
smaller payloads. In [10], a pattern of InfraRed (IR) LEDs organized
in a T-shape and a Wii  camera was  utilized to perform an indoor
auto takeoff, hovering and landing. The algorithm performs well at
60 cm height; however, at higher altitudes, the positional error will
be large and inaccurate TOL might occur. In [11], a vision off-the-
shelf hardware was used to provide real time estimates of the UAV
orientation and the position relative to the landing position. Simi-
larly, [12] studies the 6 Degree of Freedom (DOF) pose estimation
of a Miniature Air Vehicle (MAV) using on-board monocular vision
solutions.

https://doi.org/10.1016/j.asoc.2018.04.025
1568-4946/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2018.04.025
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2018.04.025&domain=pdf
mailto:mohammad.alsharman@ku.ac.ae
mailto:Bara.Emran@ubc.ca
mailto:mjaradat@aus.edu
mailto:h.najjaran@ubc.ca
mailto:raghad.husari@kustar.ac.ae
mailto:y.zweiri@kingston.ac.uk
https://doi.org/10.1016/j.asoc.2018.04.025


150 M.K. Al-Sharman et al. / Applied Soft Computing 69 (2018) 149–164

OF sensors are considered robust low cost navigational sensors
for UAVs applications [13]. OF sensors are used to avoid collision,
measure the altitude and for position stabilization during the land-
ing stage. Furthermore, OF sensors are used for height estimation
and terrain navigation [14]. In [15], the OF measurements were
used to control the vertical landing on a non-stationary platform.
Whereas, In [16], an OF sensor was utilized for the position estima-
tion of a quadrotor, and an auto-landing with 30 cm position error
was performed. In [17], PX4FLOW optical sensor was used to per-
form hovering in an outdoor flight trajectory for Cheetah quadrotor.
The optical flow components measured by the PX4FLOW sensor are
compensated for the 3D rotations and transformed to the metric
scale.

Precise state estimation is needed for the UAV to perform
successful autonomous flight. However, obtaining accurate states
estimate is challenging due to the sensor drifts, noise on the
onboard Commercial off-the-shelf (COTS) sensors and measure-
ment bias [18]. Low cost COTS sensors with such expected errors
are usually utilized in UAVs because of their lightweight, low power
consumption and compact size. By fusing the measurements of
different precise sensors, the chance of obtaining accurate esti-
mates would be definitely higher. For example, in [19], the readings
of the kinematic OF model are fused with the measurements of
the GPS/INS to estimate the 3D velocity states and position of an
object. In [20,21,18], a high-accuracy helicopter’s attitude and flap-
ping states estimation was addressed using the Kalman filter. The
unmeasured flapping angles of the Maxi Joker 3 helicopter were
estimated with maximum error not exceeding 0.3◦.

The accuracy of the estimation algorithm in the Kalman filter is
linked with the accuracy of the a priori information of the process
and measurement noise statistics which are represented by the R
and Q matrices [22,23]. Practically, inaccurate priori information
will degrade the performance of the estimator, and a divergence
of the filter might result. Therefore, the adaptive Kalman filter has
been devised to tackle the problem of having imperfect a priori
information [24–26]. The Kalman filter can be adapted using dif-
ferent procedures, i.e., Innovative-based Adaptive Estimation (IAE)
and Multiple Model Adaptive Estimation (MMAE) [22]. The IAE
technique depends on the enhancement of the filter performance
via the adaptation of the matrices R and Q which are based on the fil-
ter innovation sequence. In [23,27,28], the IAE adaptation approach
proves its capability of working with unknown measurement noise
characteristics in the Kalman filter. Moreover, applying the fuzzy
logic rules to adjust the statistical matrices has been studied in a
number of published research papers. The fuzzy-adapted Kalman
filter shows better performance in rejecting the measurement noise
and estimating the navigational states accurately [29–31].

In this paper, the problem of precision terminal landing
phase has been tackled using intelligent adaptive low cost multi-
sensor data fusion architecture. This architecture proposes a novel
multi-sensor data fusion between the experimentally obtained
OF sensors’ model, altimeter and INS solution for vertical pre-
cision landing applications. Compared to prior landing systems,
the proposed integrated solution has succeeded in performing an
autonomous precision landing in GPS denied environments with
less than 5 cm estimated altitude error. Moreover, the proposed
intelligent estimation technique has shown high degree of robust-
ness in the presence of external disturbances compared to the
normal estimation techniques.

The following sections of the paper are organized as follows.
Section 2 describes the quadrotor model used in this study and
the optical flow modeling design. Section 3 represents the design
of the proposed sensor fusion algorithm architecture. Simulation
results are presented in Section 4 while Section 5 demonstrates the
experimental validation. Finally, Section 6 concludes the paper.

2. Quadrotor model

Quadrotor has been increasingly studied as a preferred UAV
platform for various applications. It is sustained in the air by the
lift of four actuators, and it has six degrees of freedom. A typical
quadrotor incorporated in multi-rotor cross platform is composed
of four symmetrical arms. Each of its four actuators is connected
to a propeller with fixed-pitch blade, and the axes of rotation of
the four propellers are fixed and parallel to each other (see Fig. 1).
The system state variables can be controlled using different move-
ments directly related to the propellers velocities, which allow the
quadrotor to reach a desired altitude and attitude [32].

2.1. Reference frame

This section describes the various reference frames and rotation
matrix that are used to describe the position and the orienta-
tion of the quadrotor. In addition, it shows the nonlinear dynamic
equation of the quadrotor. The linear position (�) is determined
using the vector between the origins of the B-frame and E-
frame. The attitude of the vehicle is represented by the Euler

angles
(
� =
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]T)
. These angles are defined by the ori-

entation of B-frame with respect to the E-frame.
To map  the orientation of a vector from B-frame to E-frame, a

rotation matrix is needed [33]. This rotation matrix is given by:
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Where cx = cos(x) and sx = sin(x).
Along with the rotation matrix, a transfer matrix is needed to

map  the relation between the angular velocity (ω)in the B-frame
and Euler angles rates

(
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)
in the E-frame. This matrix is defined as

follows [33]:
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Where tx = tan(x).

2.2. Dynamical model

Several dynamical models can be used to characterize the
quadrotor dynamics. These models differ due to the various
assumptions and simplifications that can be made to reduce the
model complexities. As an illustration, having the vehicle aerody-
namics into consideration would complicate the dynamical model
to a high extent. Another well-used simplification is to consider
the small angle assumption for miniature quadrotors. Reference
[34] reviews dynamic models and controls of the quadrotor. A typ-
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