Applied Soft Computing 68 (2018) 1-12

journal homepage: www.elsevier.com/locate/asoc

Contents lists available at ScienceDirect

Applied Soft Computing

One-class synthesis of constraints for Mixed-Integer Linear

Programming with C4.5 decision trees

Patryk Kudta, Tomasz P. Pawlak*

Institute of Computing Science, Poznan University of Technology, Poznari, Poland

L)

Check for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 15 September 2017

Received in revised form 15 February 2018
Accepted 15 March 2018

Available online 23 March 2018

We propose Constraint Synthesis with C4.5 (CSC4.5), a novel method for automated construction of con-
straints for Mixed-Integer Linear Programming (MILP) models from data. Given a sample of feasible states
of a modeled entity, e.g., a business process or a system, CSC4.5 synthesizes a well-formed MILP model
of that entity, suitable for simulation and optimization using an off-the-shelf solver. CSC4.5 operates by

estimating the distribution of the feasible states, bounding that distribution with C4.5 decision tree and

Keywords:

Model acquisition
Constraint synthesis
Mathematical programming
One-class classification
Business process

transforming that tree into a MILP model. We verify CSC4.5 experimentally using parameterized synthetic
benchmarks, and conclude considerable fidelity of the synthesized constraints to the actual constraints
in the benchmarks. Next, we apply CSC4.5 to synthesize from past observations two MILP models of a
real-world business process of wine production, optimize the MILP models using an external solver and
validate the optimal solutions with use of a competing modeling method.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Optimization of business processes and systems is an essential
part of every business, as reducing consumed resources or increas-
ing volume of production may bring substantial advantage in a
competitive business environment. To optimize a business process,
one needs to build a mathematical model for it and optimize this
model instead of manipulating directly the parameters of the pro-
cess. This allows the process to operate uninterruptedly until the
optimal parameters are found. For instance, a clothing company
may reduce fabric loss by rearranging pieces of fabric to cut from
a fabric roll such that the loss is minimal. To do this, one needs
to build a model resembling shapes of pieces to cut and technical
restrictions of the cutting machine, and then optimize this model
using an off-the-shelf solver. The optimal cutting pattern may be
applied during e.g., maintenance break.

In this study, we employ Mixed-Integer Linear Programming
(MILP) [1] models. A well-formed MILP model consists of linear
objective function, set of linear constraints and domains of variables
thereof. Linearity facilitates interpretation of the objective func-
tion and the constraints while being enough expressive to model
many real-world processes. The constraints in a MILP model essen-

* Corresponding author.
E-mail address: tpawlak@cs.put.poznan.pl (T.P. Pawlak).
URL: http://www.cs.put.poznan.pl/tpawlak/ (T.P. Pawlak).

https://doi.org/10.1016/j.as0c.2018.03.025
1568-4946/© 2018 Elsevier B.V. All rights reserved.

tially form a conjunction, however thanks to the support of binary
variables, an alternative of constraints can be formed using the aux-
iliary binary variables. Integer (binary) variables cause optimization
of a MILP model to be NP-hard [2], however modern solvers can
efficiently handle hundreds of them.

MILP models are often built manually by an expert, requiring
thus from she competencies in the modeled process and tech-
niques of modeling. Combining these competencies is uncommon
in practice. Also, reflecting non-linear real-world relationships
using linear equations requires advanced modeling techniques. All
these issues cause model building to be error-prone, laborious and
expensive task. In contrast, optimization of a MILP model is fully
automated by the solvers.

An appealing alternative to manual model building is synthesis
of a model from data. The model synthesis problem can be con-
veniently decomposed into the synthesis of an objective function
and the synthesis of constraints. The former can be done using e.g.,
least-squares regression which is beyond our interest, and the latter
is investigated in this study.

The main contribution of this study is Constraint Synthesis with
(4.5 (CSC4.5), a novel method for construction of MILP constraints
from examples of snapshots of feasible states of the modeled pro-
cess. The feasible states represent normal operating conditions of
the process and can be conveniently acquired by observing process
execution. Observation can sometimes spot an infeasible state too
- an error, a fault or other undesirable conditions. The infeasible
states, however, are avoided in practice and thus uncommon. This

https://doi.org/10.1016/j.asoc.2018.03.025
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2018.03.025&domain=pdf
mailto:tpawlak@cs.put.poznan.pl
http://www.cs.put.poznan.pl/tpawlak/
http://www.cs.put.poznan.pl/tpawlak/
http://www.cs.put.poznan.pl/tpawlak/
http://www.cs.put.poznan.pl/tpawlak/
http://www.cs.put.poznan.pl/tpawlak/
http://www.cs.put.poznan.pl/tpawlak/
http://www.cs.put.poznan.pl/tpawlak/
http://www.cs.put.poznan.pl/tpawlak/
https://doi.org/10.1016/j.asoc.2018.03.025

2 P. Kudta, T.P. Pawlak / Applied Soft Computing 68 (2018) 1-12

is the reason, why we assume their absence and consider one-class
examples only (like one-class classification in Machine Learning
[3]). CSC4.5 copes with one-class examples by estimating the dis-
tribution of the feasible states using Expectation Maximization [4]
and sampling this distribution for artificial likely infeasible states
that act as the second class examples. A training set made of the
feasible and the likely infeasible examples is fed to the C4.5 algo-
rithm [5] for decision tree learning. Finally, the resultant decision
tree is transformed into a well-formed MILP model. CSC4.5 supports
alternative of constraints by automatically introducing auxiliary
binary variables. The synthesized MILP model, when supplemented
with an objective function, may be fed to a ready-to-use solver for
optimization.

We experimentally tune parameters of CSC4.5 using synthetic
benchmarks and then evaluate properties of the synthesized mod-
els. The general conclusions are promising, however leave room for
improvements. Next, we apply CSC4.5 to synthesize a MILP model
forareal-world process of wine production and optimize the result-
ing model using an off-the-shelf solver. The comparison of this
model to a model constructed by a naive algorithm based on calcu-
lating a convex hull of a training set reveals superiority of CSC4.5 in
terms of consumed computational resources and higher estimated
quality of the optimal solution.

Section 2 formalizes the constraint synthesis problem, Section 3
compares this work to the past works, and Section 4 describes the
details of CSC4.5. Experimental evaluation is conducted in Section
5, and the abovementioned application to wine production process
in Section 6. Section 7 discusses the results and the properties of
CSC4.5, and Section 8 concludes this work.

2. Problem statement

This section formalizes the constraint synthesis problem, and
Section 4 shows an algorithm solving this problem.

Let X1, X2, ..., Xp € Rbeinput variables, let x=[x1, X2, ..., Xp] be
an example of values of input variables, let X be a set of examples,
and let by, by, ..., bm € {0, 1} be auxiliary variables, b=[bq, bs, .. .,
bm], i.e., b is not a part of an example. Then, constraint c(x, b) is
a function in form of Z?:1Wix,- + Z;:]:1kal< <a, where w;, v, € R
are weights and a ¢ R is a constant. The aim of constraint synthesis
problem is to find a set of constraints C that maximizes the number
of examples x in X such that every constraint c in C is satisfied for x
and some b, i.e,, [{X € X : VcccTpc(x, b) = true}‘.

Albeit not explicitly stated, examples in X correspond to the fea-
sible states of a modeled process, and as such delineate location of
the feasible region of C. We call them the feasible examples to dis-
tinguish from the unlabeled examples that are introduced later in
this paper. Therefore, the constraint synthesis problem is a kind of
one-class classification problem [3] with the aim to learn the char-
acteristics of the given examples instead of learning the boundary
between examples of different classes.

The constraint synthesis problem is ill-posed, as it has indefi-
nitely many solutions, including a degenerated solution C=¢, i.e.,an
empty set of constraints satisfied for every x. The choice of a particu-
lar solution depends on user’s preferences, technical requirements
and/or other factors. In this study, from the syntactic perspective,
Cis preferred such that the individual constraints ¢ € C form facets
of hypercubes in R", and the hypercubes correspond to alterna-
tive subsets of constraints in C, and the feasible region of C in
R™ is a union of these hypercubes, modeled by assigning distinct
values for b for each hypercube. From the semantic perspective,
C is expected to maximize the number of true positives in X and
minimize the number of false negatives in X. Note that measures
based on true negatives and false positives cannot be calculated, as
negative examples do not exist in X.

Although the set of constraints C is formally a part of a MILP
model, synthesis of other parts of the model is beyond the scope
of this study and we use the terms ‘set of constraints’ and ‘model’
interchangeably.

3. Related work

The work on constraint synthesis can be classified w.r.t. two
axes: the type of the constraints: Linear Programming (LP), Non-
Linear Programming (NLP), Constraint Programming (CP), Modulo
Theories (MT) and other types, and the type of the synthesis prob-
lem: one-class, where only feasible examples are available like in
the problem posed in Section 2, and two-class, where feasible and
infeasible examples are available.

CSC4.5 introduced in this work belongs to the category of
one-class synthesis of LP constraints and involves state-of-the-
art Machine Learning (ML) algorithms: Expectation Maximization
(EM) [4] and C4.5 [5]. Therefore, we first review the alternative
approaches to constraint synthesis, beginning from the works on
LP constraints and then advance to other types. Next, we discuss
the ML perspective and pros and cons for possible alternatives to
EM and C4.5.

Regarding the synthesis of LP constraints, GenetiCS [6] uses
strongly-typed Genetic Programming [7] to tackle two-class syn-
thesis. Given considerably successful results, the same authors
develop GOCCS [8], an extension of GenetiCS, supporting one-class
synthesis. GOCCS employs an abstract syntax tree (AST) represen-
tation that may express LP and NLP constraints. GOCCS is verified
on synthetic benchmarks and in modeling of a real-world business
process of wine production with good results. GOCCS, however,
suffers from the curse of dimensionality [9] and the quality of the
synthesized models drops rapidly for over half a dozen variables.
Evolutionary-Strategy [10] based One-Class Constraint Synthesis
(ESOCCS) [11] synthesizes constraints in the type parameterized
within LP and NLP classes. ESOCCS turns out superior to GOCCS
when assessed on several synthetic benchmarks. CSC4.5 differs con-
ceptually from GOCCS and ESOCCS in its support for the synthesis
of alternative constraints.

The work [12] proposes to encode the two-class synthesis prob-
lem of LP-like models using a MILP problem and solve it optimally
w.r.t.a custom measure of model complexity. Although this method
is exact, it becomes computationally infeasible if the number of
variables is over a dozen due to NP-hardness of solving the MILP
problem [2]. Also, this method basically features no bias, in terms
of the bias-variance dilemma [13], by fitting the constraints to the
training data such that the separation of all feasible examples from
all infeasible examples is guaranteed, even if this leads to exces-
sive variance of errors on the test data. In contrast, CSC4.5 uses a
softer approach that allows some training examples (e.g., outliers)
to remain on the wrong side of the constraints if the constraints
reflect general trends in data, likely leading to lower variance of
errors on the test data.

The work [14] proposes to handle the one-class synthesis prob-
lem by building a convex hull of a set of feasible examples, cluster
facets of this hull using k-means [15], and write the facets down
as LP constraints. Complexity of this method is exponential in the
number of input variables, and as Section 6 shows calculating a
convex hull not only lasts longer than running CSC4.5 for the same
data, but also results in bloated models.

In [16] ready-to-use implementations of C4.5 decision tree and
artificial neural network are trained using two-class data, and then
transformed to either Mixed-Integer NLP, CP or MT models. Ref.[16]
differs from this work by that Ref. [16] tackles two-class problem,
and this work one-class problem, and Ref. [16] uses default param-

Download English Version:

https://daneshyari.com/en/article/6903592

Download Persian Version:

https://daneshyari.com/article/6903592

Daneshyari.com

https://daneshyari.com/en/article/6903592
https://daneshyari.com/article/6903592
https://daneshyari.com

