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a  b  s  t  r  a  c  t

In  the fields  of  machine  learning  and data  mining,  feature  selection  methods  are  used to  identify  the
most  cost-effective  predictors  and to  give  a deeper  understanding  of pattern  recognition  and  extraction.
This  study  proposes  a novel  mutually-exclusive-and-collectively-exhaustive  (MECE)  feature  selection
scheme.  Based  on  the MECE  principle  in decision  science,  the  scheme,  which  has  three  stages  including
evaluation  of  independence,  evaluation  of  importance  and  evaluation  of completeness,  aims  to  identify
the  independent  and important  variables  with  complete  information.  A case  study  of  fault  classification
in  semiconductor  manufacturing  and  a study  of breast  cancer  relapse  identification  in bioinformatics  are
used  to validate  the proposed  scheme.  The  results  demonstrate  that  the  proposed  MECE  scheme  selects
fewer  variables,  avoids  the multicollinearity  problem,  and  improves  fault  classification  accuracy  in  the
two  case  studies.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Feature selection is a technique of selecting a subset of features
which characterizes the concept of target variables for the purpose
of model construction [1]. Improvements in commonly used fea-
ture selection techniques are needed to reduce the computational
burdens resulting from the expansion of modern high-throughput
technologies accompanied by the exponential growth of the col-
lected data. A “good” technique should reduce the actual costs of
feature collection and pre-processing, and even improve classifier
accuracy [17,19]. Motivated by the need to filter out more irrele-
vant, redundant, and biased variables in order to support model
construction, we present a mutually-exclusive-and-collectively-
exhaustive (MECE) feature selection scheme. The scheme has
three stages including measuring the independence, measuring
the importance, and measuring the completeness. We  use the fol-
lowing two practical case studies involving the collection of large
amounts of data to test and compare the scheme to commonly used
selection methods.

The semiconductor manufacturing process is normally under a
constant, real-time surveillance via the monitoring of signals col-
lected from sensors or process points. As wafers moves through a
factory, the process data from one manufacturing step is transferred
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to the next tool located in the next step. At the end of production,
nearly 750 tigabytes (TB) of data can be associated with each wafer
[26]. While these datasets provide unprecedented opportunities
for effective controlling and optimizing the production process, the
amount of information collected overwhelms the ability to identify
key variables and detect faults in a timely manner.

Similarly, the field of bioinformatics has become increasingly
dependent on microarray or high throughput sequencing tech-
nologies for identifying genes that are implicated in biological
processes. The identified sequences or genes are being used, for
instance, to classify future observations and to develop person-
alized treatments [11]. The number of variables in the raw data,
however, ranges from 6000 to 60,000, and while some initial fil-
tering can usually bring the number down to a few thousand, gene
sequencing experiments are costly, and it is difficult to extract use-
ful knowledge and patterns from the large and noisy datasets [12].

In both cases, feature selection can help to manage the resulting
hundreds of thousands of variables and avoid the “curse of dimen-
sionality” [13]. In particular, dimensionality reduction is a popular
technique to remove noisy and redundant features. The techniques
can be categorized into feature extraction and feature selection.
Feature extraction projects the existing variables into a new feature
space with lower dimensions, whereas feature selection selects a
subset of the existing variables without a transformation [2]. Lots of
previous studies introduce feature selection or feature extraction
techniques [2,3,12]. The purpose of feature selection attempts to
select the minimally sized subset of features for (1) improving pre-
diction accuracy, and (2) approximating original class distribution
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given only the values for the selected variables [1]. Indeed, fea-
ture selection technique benefits the classification performance of
the predictors, selects cost-effective predictors, and provides a bet-
ter understanding of pattern recognition and extraction. The latter,
however, can generate selected variables with a multicollinearity
problem or can select insufficient information to support decision-
making.

Therefore, we develop a novel mutually-exclusive-and-
collectively-exhaustive (MECE) feature selection scheme having
the evaluation of independence, the evaluation of importance, and
the evaluation of completeness [15].1 This study contributes to
the literature and provides the following benefits: (1) selecting
independent and important variables with sufficient information
for decision-making, 2) addressing the curse of dimensionality, 3)
avoiding the multicollinearity problem, and 4) selecting variables
retaining the original physical characteristics.

The remainder of the paper is organized as follows. Section 2
reviews the existing feature selection techniques and discusses
their advantages and disadvantages. Section 3 presents the MECE
feature selection scheme. Sections 4 and 5 describe the two case
studies and the results of testing the proposed scheme. Also com-
pares the proposed scheme to the other popular techniques. Section
6 concludes and suggests future work.

2. Feature selection techniques

Several classical feature selection techniques are commonly
used to enhance the data quality and support pattern recognition
in the fields of machine learning and data mining. In this study,
based on the literature, we include but not limited to principal com-
ponent analysis (PCA), clustering analysis, stepwise selection (SS),
LASSO (least absolute shrinkage and selection operator) and ran-
dom forest (RF). [18,21]. In particular, the former three are classical
methods in the multivariate analysis while the other two are the
neoclassical algorithms (named in this study) to address the high-
dimensional issue and improve the robustness. Then, the proposed
MECE scheme compares with these existing techniques via two
types of datasets in Section 4. This section reviews these popular
techniques.

2.1. Principal component analysis

Principal component analysis (PCA) is mathematically defined
as an orthogonal linear combination of original variables that
transforms the data into a new coordinate system for maximiz-
ing variance [10]. Observations project to the new space and the
value presented on the first axis is called the first principal com-
ponent (PC) which generally presents the greatest variance (or the
greatest eigenvalue). The second PC with the second greatest vari-
ance is characterized by the second axis, and so on. In the new PC
space, PCs are orthogonal and uncorrelated to each other. Thus, PCA
can eliminate the multicollinearity problem and support dimen-
sion reduction by choosing fewer PCs instead of original variables.
However, PCs generated by converting the original dimension into
reduced dimension may  partially lose the original physical charac-
teristics and thus are difficult to interpret since they are a linear
combination of multiple original variables. Note that, in this study,
we don’t apply PCA to our case studies since we focus on the origi-
nal variable selection in semiconductor manufacturing process and
gene analysis but PCA conducting variable transformation to PC
may  lose the original interpretation.

1 In general, we  use without distinction the terms “variable” and “feature” when
there is no impact on the selection algorithms. In fact, “variable” refers to the raw
input factors and “features” is constructed by these raw input factors [3].

2.2. Clustering analysis

Clustering is based on the concept of replacing a group of similar
variables (defined within the same cluster) by a cluster centroid,
which becomes a selected feature. In general, there are two cat-
egories of clustering methods: the hierarchical method and the
nonhierarchical method.

Ward’s clustering method, also called the minimum variance
method, is an example of the hierarchical method [16]. Given n
observations, it starts with n clusters with size 1 (i.e., each clus-
ter has only one observations individually) and continues grouping
the observations at each step based on minimum variance criterion
(i.e., error sum of square) until all observations are merged into one
cluster. Let xik denote the vector of variables regarding to observa-
tion i in cluster k, x̄ · k be the vector with the average of variables
regarding to observations within cluster k, and x̄·· be the vector with
the average of variables regarding all observations. Ward’s method
defines three metrics according to the squared Euclidean distance
between points. The error sum of square (ESS), total sum of square
(TSS) and R-square (R2 or coefficient of determination) are defined
as:

ESS =
∑

i

∑
j
‖xik − x̄·k‖

2
(1)

TSS =
∑

i

∑
j
‖xik − x̄··‖2 (2)

R2 = TSS − ESS

TSS
(3)

Ward’s method generates the best combination with the small-
est ESS (or the greatest R-square alternatively), then goes to the
next step for forming n-2 clusters, and so on. The algorithm termi-
nates when all observations are merged into one single cluster with
size n. The disadvantage is that once the variable is assigned to a
cluster at an early stage, the variable cannot be reallocated again.
That is, the technique usually generates “local optimum”.

K-means clustering is an example of the non-hierarchical clus-
tering method [22]. Given a desired number of cluster, K-means
reassigns each observation to clusters iteratively. The objection
function is to minimize a squared error function as:
∑

i

∑
j
‖x(k)
i

− ck‖
2

(4)

where ‖x(k)
i

− ck‖
2

is a distance measure between the observation i

located in cluster k (i.e., x(k)
i

) and the cluster centroid cj . This squared
error function is an indicator measuring the distance between n
observations and its corresponding cluster centroids. The drawback
is that K-means is sensitive to the outlier and, therefore may  “lose”
the physical characteristics of the original variables. To address the
problem, the K-medoids method selects the original variable which
is most centrally located in a cluster as a reference point instead of
taking the mean value [14]. The current study adopts two-phase
clustering selection (TPS) including Ward’s method (i.e., hierarchi-
cal clustering) in the first phase to determine the number of clusters
which used in K-means clustering (i.e., non-hierarchical cluster-
ing) in second phase. Even though clustering analysis can identify
the independent feature and reduce the dimension, the methods
cannot ensure the importance of the selected features.

2.3. Stepwise selection

Stepwise selection (SS), or stepwise regression, allows moves
in forward and backward directions, dropping or adding variables
step by step [9]. Forward selection begins with a regression model
including the most significant variable via statistical test. It adds
one variable at a time and continues adding variables until none
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