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a  b  s  t  r  a  c  t

Big  data  analytics  have  been  employed  to extract  useful  information  and  derive  effective  manufac-
turing  intelligence  for yield  management  in  semiconductor  manufacturing  that  is one  of the  most
complex  manufacturing  processes  due  to  tightly  constrained  production  processes,  reentrant  process
flows,  sophisticated  equipment,  volatile  demands,  and  complicated  product  mix.  Indeed,  the  increasing
adoption  of multimode  sensors,  intelligent  equipment,  and  robotics  have  enabled  the  Internet  of  Things
(IOT)  and  big  data  analytics  for semiconductor  manufacturing.  Although  the  processing  tool,  chamber  set,
and recipe  are  selected  according  to product  design  and  previous  experiences,  domain  knowledge  has
become  less  efficient  for defect  diagnosis  and  fault  detection.  To  fill  the  gaps,  this  study  aims  to  develop
a  framework  based  on Bayesian  inference  and  Gibbs  sampling  to investigate  the  intricate  semiconductor
manufacturing  data  for fault  detection  to empower  intelligent  manufacturing.  In  addition,  Cohen’s  kappa
coefficient  was  used  to eliminate  the  influence  of  extraneous  variables.  The  proposed  approach  was  val-
idated  through  an  empirical  study  and  simulation.  The  results  have  shown  the  practical  viability  of the
proposed  approach.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Semiconductor fabrication facilities (fabs) are the most capital-
intensive and fully automated manufacturing systems, in which
similar equipment and processes are employed to produce inte-
grated circuits via lengthy complicated processes with tightly
constrained production processes, reentrant process flows, sophis-
ticated equipment, and waiting time limits to fulfill the volatile
demands of high product mix. The yield learning curve of semicon-
ductor manufacturing [1–3] has demonstrated that data analytics,
cumulative engineering training, and domain knowledge have sig-
nificantly enhanced yield, and thus integrated yield enhancement
methods [4] and [5] are widely employed. However, high dimen-
sionality and multi-collinearity [6] among the operation variables
cause difficulty in embracing the independent condition for statis-
tical testing and conventional analysis. Furthermore, the increasing
adoption of multimode sensors, intelligent equipment, and robotics
have enabled the Internet of Things (IOT) and advanced analytics
of automatically collected big data for predicting process behavior
and identifying defective tools, chambers, and products to improve
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the yield and productivity [7–9] for smart production of semicon-
ductor manufacturing. On the other hand, numerous fundamental
demands for computational issues such as variable selection and
data preparation are excessively dependent on domain knowl-
edge. Therefore, substantial differences exist between research
results and actual processes, and thus researchers have combined
technological and psychological factors to improve the interaction
between systems and behavior [10–12].

Indeed, building an accurate function of process data in indus-
trial settings is difficult since the process variables are highly
correlated [13] and [14], in which high collinearity occurs in
high-dimensional modeling because of an increased probability
of dependency among the parameters. Furthermore, generating
a training set that can circumvent this phenomenon is difficult,
since the variables cannot be dropped without understanding the
interactions among parameters [15]. On the other hand, process
engineers are interested in identifying a few essential variables
to effectively identify root causes. Alternatively, a novel approach
to hedge and compensate the critical dimension variation of the
developed-and-etched circuit patterns via a short-loop processes is
evolved for yield enhancement [16]. Also, advanced process control
(APC) with dynamically adjusted proportional-integral run-to-run
controller is developed to compensate overlay errors [5]. Since hun-
dreds of factors must be considered simultaneously to accurately
characterize the yield performance, a retrospective design of exper-
iment (DOE) data mining that matches potential designs with a
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huge amount of data automatically collected to enable effective
and efficient data analytics [17].

To fill the gaps for dealing with multi-collinearity and empirical
variable selection behavior, this study aims to develop a frame-
work based on Bayesian inference and Gibbs sampling for analyzing
semiconductor manufacturing big data with high volume of vari-
ables, where Cohen’s kappa coefficient was used to eliminate
the influence of extraneous variables. Indeed, the proposed Gibbs
sampling methodology has been used for deep learning [17], high-
dimensional linear regression [18], and prior knowledge learning
[19]. To estimate the validity of the proposed approach, simulation
and an empirical study were conducted with data collected in a
world leading semiconductor manufacturing company.

The remainder of the paper is organized as follows: Section 2
introduces the fundamental material for application to semicon-
ductor manufacturing. Section 3 presents a research framework
with detailed procedures. Section 4 details the validation of the
framework with simulation and subsequently empirical study in
Section 5. Section 6 concludes with a discussion of results and fur-
ther research directions.

2. Fundamental

The notation and terminologies used in this paper are as follows:
i Index of process steps
j  Index of manufacturing tools
l Index of observations
k Number of process steps
si Number of manufacturing tools in the ith step
msi Number of manufacturing chambers for each tool in the ith

step
M Number of process variables
N Number of observations
Xil Nominal factor set of step-tool-chamber information (pro-

cess variable)
XN × M matrix of process information
YN × 1 matrix of yield percentage
YcN × 1 matrix of yield category
Ŷ
c
N × 1 matrix of predicted yield category

p Prior probability for the isi−msi th binary variable
l Indicator function
Wafer fabrication is complex and lengthy that

consists of segments of process steps including oxida-
tion/deposition/metallization, lithography, etching, ion
implantation, photo-resist strip, cleaning, inspection, and mea-
surement. Fig. 1 illustrates a segment/short-loop of process steps,
and at each step, the wafer is fabricated by a specific tool. A
number of alternative tools and chambers may  be qualified for
performing the same process in a step. However, only one of the
many tool-chamber features is applied to a wafer. In particular,
since hundreds of factors must be considered simultaneously to
accurately characterize the yield performance, a retrospective
design of experiment (DOE) data mining that matches potential
designs with a huge amount of data automatically collected to
enable effective and efficient data analytics [20].

Suppose that k process steps exist for completing a product. si
denotes the number of manufacturing tools in the ith step, where
i = 1, . . .,  k. Similarly, msi represents the number of manufactur-
ing chambers for the jth corresponding tool in the ith step, when
1 ≤ j ≤ si. Hence, the total set of process variables is estimated using

M =
k∑
i=1

si∑
j=1

msi =
k∑
i=1

si ∗ msi .

To achieve shorter production cycle time, faster process devel-
opment, higher yield efficiency, and lower contamination risk,

cluster tools that consist of specific processing, cleaning, or cooling
chambers, with loading and unloading chambers are increasingly
employed in semiconductor manufacturing. Without loss of gen-
erality, the tool compounds and process chambers are noted with
singular nominal factors as the following explanation.

2.1. Approximate inference for distribution of nominal data

A categorical distribution, i.e., a multinomial distribution, is a
generalization of the Bernoulli distribution for a categorical ran-
dom variable with more than two  possible outcomes [21]. In the
present study, categorical distribution was used to construct the
nonparametric Bayesian model for multivariate nominal data.

Bayesian models can represent dependency among variables, in
which current knowledge about model parameters is expressed by
prior distribution, denoted as p

(
�
)

, and will be updated with new

evidence �′ with the likelihood p
(
�′|�

)
to derive the posterior dis-

tribution. If posterior and prior probability distributions are from
the same family of distributions, they are then called conjugate
distributions, and the prior is called a conjugate prior. In partic-
ular, Dirichlet distribution is a conjugate prior for the categorical
distribution of multinomial data.

However, quantifying the idea of a Bayesian model is diffi-
cult for multinomial data because of the complexity in estimating
the parameters of the Dirichlet distribution. Nevertheless, one
approach to facilitate this difficulty is to sample values from the
distribution before computing the sample statistics.

Sampling from an arbitrary distribution can be extremely com-
plicated. However, the Markov chain Monte Carlo (MCMC) method
has facilitated Bayesian statistics [22] that can be applied widely.
A Markov chain is a sequence of events with a distribution that
depends only on the outcome of the previous event. One basis
of Markov chain theory posits that, if the probabilities associated
with different events are constructed in the correct manner and
the chain has a sufficient length, then the event distribution can
be made equal to any arbitrary distribution, including a posterior
distribution.

Gibbs sampling is an MCMC  technique that is suitable for this
task. The concept of Gibbs sampling involves generating posterior
samples by eliminating each variable for sampling from its con-
ditional distribution, with the remaining variables fixed to their
current values.

The Gibbs sampling-based searching algorithm [23] was  origi-
nally proposed by George and McCulloch [24]. Garcia-Donato and
Martinez-Beneito [25] showed that this simple sampling strategy
combined with estimates based on the frequency of visits (the
one implemented in the present study) provides extremely reliable
results.

The Gibbs sampler is used to estimate the posterior distribution
and assess the model parameters [26] and [27]. However, the sam-
pler is particularly favorable for sampling from imbalanced class
distribution [28]. Gibbs sampling was preferred since it functions
efficiently in the presence of multi-collinearity and high dimen-
sionality.

2.2. Cohen’s kappa coefficient

Cohen’s kappa is a statistical method that measures the levels
of agreement between two  raters, each of which is classified into
several exclusive categories.

A brief overview of nonparametric techniques shows that kappa
is most typically applied to predictive models devised using unbal-
anced data [29]. This study employed the kappa coefficient for data
clearance and variable association.
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