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a  b  s  t  r  a  c  t

We  introduce  a short-term  time  series  prediction  model  by means  of  evolutionary  algorithms  and  Bern-
stein  polynomials.  This  adapts  Bernstein-type  algebraic  skeletons  to extrapolate  and  predict  short  time
series.  A  mixed  smoothing  strategy  is used  to  achieve  the  necessary  balance  between  the  roughness  of
the  algebraic  prediction  and  the smoothness  of  the  moving  average.  Computational  experiments  with
standardized  real  world  time  series  illustrate  the  accuracy  of  this  approach  to short-term  prediction.
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1. Introduction

Forecasting is a modelling challenge that relies on a time series
analysis. Its aim is to identify a model in time-stamped data pre-
sumably generated by some process. Extrapolating by means of this
model it makes reliable predictions for unseen data. Recent decades
have delivered various models and techniques that are suited to
long-term or short-term time series forecasting [1]. Unfortunately,
the sheer amount of data needed for training, validating and test-
ing mostly renders long-term time series analysis implausible. Yet,
a one-step forward future horizon is adequate for short-term time
series forecasting [1] delivering methods which are widely used
in high frequency time series analysis with intra-daily data values
[2]. Short-term time series predictors are used in finance [3–5];
electricity demand and the associated price forecasting problem
[6–8]; wind power; passenger demand [9] and many other indus-
trial applications.

Time series forecasting techniques can be coarsely grouped into
classical linear modelling, such as simple exponential smoothing
[10], Holt-Winte’s methods [11] or Autoregressive Integrated Mov-
ing Average (ARIMA) [12], and modern non-linear modelling that
is based on soft computing. The latter includes regime-switching
models comprising a wide variety of threshold autoregressive mod-
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els [13–15]: self exciting models [15–17], smooth transition models
[18] and continuous-time models [19,20]. Hybrid forecasting meth-
ods combine regression, data smoothing, and other techniques to
produce forecasts that make up for the comparative deficiencies of
individual methods.

A large number of linear and non-linear methods of forecast-
ing appear in the literature, with some methods claiming to do a
better job than others under competing assumptions, for example:
when given only a short series of input data, or if applied to long-
term forecasting [1]. The literature [3–23] covers a wide-variety of
techniques that include various flavours of signal processing, sup-
port vector machines, ARIMA, Artificial Neural Network (ANN) and
Evolutionary Algorithms (EA).

The reader may  wonder why  there is a continued and strong
interest in a plethora of algorithms. The no-free-lunch theorems
[24,25] lead to the conclusion that a problem can always be found
to defeat any algorithm. Indeed, practical interest in the develop-
ment of new and hybrid algorithms is warranted because of this
reality that no single method will outperform all others in every
single situation. At the same time, as Stafford Beer once observed
[26], problems of practical interest cannot take an algorithm com-
pletely by surprise because the regularities that they comprise are
of this world. Real-world problems have neither been designed
nor contrived to defeat a popular algorithm. A taxonomy of prac-
tical problems, therefore, exists, and it motivates the search for
improved algorithms that suit different classes of problems.

In our earlier work [27–29], special EA schemes for the identifi-
cation of near-optimal algebraic skeleton sequences based on Prony
interpolants (represented as linear recurrence sequences (LRS) in

https://doi.org/10.1016/j.asoc.2018.01.002
1568-4946/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2018.01.002
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2018.01.002&domain=pdf
mailto:kristina.lukoseviciute@ktu.lt
mailto:rita.palivonaite@ktu.lt
mailto:dr.daniel.howard@gmail.com
mailto:minvydas.ragulskis@ktu.lt
https://doi.org/10.1016/j.asoc.2018.01.002


48 K. Lukoseviciute et al. / Applied Soft Computing 65 (2018) 47–57

the discrete case) are developed. The high variability of Prony inter-
polants is managed by means of external [27], internal [28] and
mixed smoothing strategies [29]. Such Prony polynomial based
techniques are shown to be well applicable for the prediction of
stationary short-term time series – but are not well suited for such
highly variable time series as Odonovan and Montgome [30].

A natural question arises as to whether some other algebraic
interpolants, covering a wider class of functions than the Prony
polynomials, might be of benefit to short-term time series forecast-
ing applications. This paper aims to investigate this question with
Bernstein polynomials [31] and is structured as follows. Prelimi-
naries on forecasting techniques based on Prony polynomials are
given in the second section. Advances over research in [27–29] are
presented in the third section. Evolutionary algorithms for the iden-
tification of a near-optimal set of corrections are developed in the
fourth section, the validation of the model is performed in the fifth
section, computational experiments with standard real world time
series are presented in the sixth section, and concluding remarks
are given in the final section.

2. Preliminaries

The short overview of time series prediction based on Prony
polynomials [27–29] in this section, helps to introduce the method
that uses Bernstein polynomials.

2.1. The order of a sequence

Let us consider an order n LRS with constant coefficients:

xk = an−1xk−1 + an−2xk−2 + · · · + a0xk−n; k = 0, 1, . . .;  (1)

where coefficients aj, j = 0, 1, . . .,  n − 1 are constants. The initial con-
ditions xk, k = 0, 1, . . .,  n − 1 uniquely determine the evolution of this
LRS [32]. The auxiliary polynomial to Eq. (1) reads

P (�) = �n − an−1�
n−1 − an−2�

n−2 − . . . − a0, (2)

where � is the root of the characteristic equation. The LRS takes the
form

xj = �1�
j
1 + �2�

j
2 + . . . + �n�

j
n (3)

if all n roots of Eq. (2) �1, �2, . . .,  �n are distinct and coefficients are
determined to fit the initial conditions of the recurrence. If some
roots coincide, then the recurrence takes the form:

xj =
r∑
k=1

nk−1∑
l=0

�kl

(
j

l

)
�j−1
k

(4)

where r is the number of distinct roots, nk is the multiplicity index of
the k-th root; n1 + n2 + · · · + nk = n. If the order of LRS is not known in
advance, the algorithm for the reconstruction of the model of LRS
from a sequence

(
xj
)+∞
j=0

is more complex. The Hankel transform

of
(
xj
)+∞
j=0

produces the sequence
(
hj

)+∞
j=0

where hj = det
(
Hj

)
and

Hj = (xk+l−2)1≤k,l≤(j+1) is a Hankel matrix – catalecticant matrix of
dimension (j + 1) × (j + 1). If there exists an n ≥ 1 such that hn /= 0
but hk = 0 for all k > n, then

(
xj
)+∞
j=0

is an LRS and its order is n, and

the auxiliary Eq. (2) now reads:

det

⎡
⎢⎢⎢⎢⎢⎢⎣

x0 x1 . . . xn

x1 x2 . . . xn+1

. . .

xn−1 xn . . . x2n−1

1 � . . . �n

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0. (5)

This linear system of algebraic equations has a unique solution
because hn /= 0 [33]. How can one build a model of the process
using Eq. (4) if the observed sequence is not an algebraic equation?
The idea behind the algebraic prediction technique is based on the
identification of the skeleton algebraic sequences and is presented
in [27]. Such a concept is based on the assumption that many time
series are contaminated with additive noise. This is a strong reason
why central to algebraic prediction models is the detection of a base
skeleton algebraic sequence in the time series data that removes
this additive noise. Further modifications are presented in [28,29].

2.2. Algebraic prediction, external smoothing (APES)

APES is presented in [27]. Let 2n + 1 observations be available
for building the model of the process: (xk)

2n
k=0; where x2n is the

value of the observation at the present time. The assumption made
that the sequence consists of the addition of noise to some alge-
braic progression means that the determinant dn /= 0. The goal
now becomes to identify a vector of corrections (ε0, ε1, . . .,  ε2n)
such that determinant d̃n of differences to these corrections is min-
imized:

d̃n = det

⎡
⎢⎢⎢⎣
x0 − ε0 x1 − ε1 · · · xn − εn

x1 − ε1 x2 − ε2 · · · xn+1 − εn+1

· · ·
xn − εn xn+1 − εn+1 · · · x2n − ε2n

⎤
⎥⎥⎥⎦ (6)

Corrections are identified before any predictions are made with
the goal of minimizing any distortions of the original time series
and so the fitness function which is the subject of the evolutionary
pressure as applied by the EA [27] is given by:

Fe (ε0, ε1, . . ., ε2n) = 1

a|d̃n| +
∑2n

k=0�k
∣∣εk∣∣ (7)

where the penalty constant, a, is chosen to reflect a desired bal-
ance between the magnitude of the determinant and the sum of
weighted corrections; �k define the tolerance corridor for correc-
tions εk. The closer is the element to the last time point, the higher
is its weight – and the lower is the variability of its correction.

The evolutionary computation strategy developed in [27]
averages 100 reconstructed algebraic skeletons for every single
prediction – a single step prediction horizon – to discover a near-
optimal vector of corrections.

2.3. Algebraic prediction, internal smoothing (APIS)

An alternative forecasting strategy for short time series in [28]
assumes that 2n observations are available: (xk)

2n−1
k=0 ; and x2n−1 is

the value of the observation at the current time. Algebraic equa-
tion dn = 0 uniquely determines x2n, the element that follows in
this sequence. However, such straightforward computations can-
not produce satisfactory forecasts. Thus, instead of trying to build
such a direct algebraic model into the future, a conciliation between
the variability of the skeleton algebraic sequences and the smooth-
ness of the averaged estimates is introduced:

Fi (ε0, ε1, . . .,  ε2n−1) = 1

a
∑
�k

∣∣εk∣∣ +
∣∣x̃2n − x̄2n

∣∣ , (8)

where x̃2n is determined from

det

⎡
⎣ x0 − ε0 x1 − ε1 · · · xn − εn

· · ·
xn − εn xn+1 − εn+1 · · · x̃2n

⎤
⎦ = 0 (9)
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