Accepted Manuscript

Title: PSO Tuned FLC for Full Autopilot Control of Quadrotor to Tackle Wind Disturbance Using Bond Graph Approach

Authors: Vahid Mohammadi, Sehraneh Ghaemi, Hamed

Kharrati

PII: S1568-4946(18)30021-8

DOI: https://doi.org/10.1016/j.asoc.2018.01.015

Reference: ASOC 4662

To appear in: Applied Soft Computing

Received date: 6-2-2017 Revised date: 9-1-2018 Accepted date: 12-1-2018

Please cite this article as: Vahid Mohammadi, Sehraneh Ghaemi, Hamed Kharrati, PSO Tuned FLC for Full Autopilot Control of Quadrotor to Tackle Wind Disturbance Using Bond Graph Approach, Applied Soft Computing Journal https://doi.org/10.1016/j.asoc.2018.01.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

PSO Tuned FLC for Full Autopilot Control of Quadrotor to Tackle Wind Disturbance Using Bond Graph Approach

Vahid Mohammadi^{a, 1}, Sehraneh Ghaemi^b, Hamed Kharrati^c

Graphical abstract

Highlights

- Quadrotor model in bond graph approach is considered
- An FLC-PID controller is proposed for full controlling the quadrotor
- Fuzzy rules are obtained via Particles Swarm Optimization (PSO)
- Gimbal lock problem is eliminated by quaternion equations
- Robustness of the controller against wind disturbance is simulated

Abstract The ability of Bond Graph (BG) in modeling multi-domain structures results in a more precise and expansive interface. Hence, this paper develops the model of a quadrotor using BG approach. Then, the paper introduces and optimizes a Fuzzy Logic Controller (FLC) with the aim of making intelligent decisions close to human decisions. Additionally, a Particle Swarm Optimization (PSO) algorithm is utilized to have minimum 4 rules for FLC, which leads the controller to be quick. It is because a fast FLC is necessary in the next part to convert the

^a Room 021, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran Email: v.mohammadi@ieee.org

^b Room 318, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran Email: ghaemi@tabrizu.ac.ir

^c Room 342, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran Email: kharrati@tabrizu.ac.ir

¹ Corresponding author: Office Room 021 Tel: (+98-41)33393740 Fax: (+98-41)33300819

Download English Version:

https://daneshyari.com/en/article/6903981

Download Persian Version:

https://daneshyari.com/article/6903981

<u>Daneshyari.com</u>