
Please cite this article in press as: M. Peker, A fully customizable hardware implementation for general purpose genetic algorithms,
Appl. Soft Comput. J. (2017), https://doi.org/10.1016/j.asoc.2017.09.044

ARTICLE IN PRESSG Model
ASOC-4491; No. of Pages 11

Applied Soft Computing xxx (2017) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsev ier .com/ locate /asoc

A fully customizable hardware implementation for general purpose
genetic algorithms

Murat Peker
Department of Electrical and Electronics Engineering, Nigde Omer Halisdemir University, Nigde 51240, Turkey

a r t i c l e i n f o

Article history:
Received 10 May 2017
Received in revised form
16 September 2017
Accepted 25 September 2017
Available online xxx

Keywords:
Field programmable gate arrays
Genetic algorithms
Hardware design languages

a b s t r a c t

In this work, a fully customizable general purpose genetic algorithm (GA) IP core has been proposed for
field programmable gate arrays (FPGAs) using the pipeline and parallel architectures to speed up the
GA process. The proposed system is implemented on FPGA and coded with very high speed integrated
circuits (VHSIC) hardware description language (VHDL). The GA operators and the fitness functions are
designed in a modular structure to enable the use of these modules asynchronously. The VHDL code is
written with generic parameters to allow the customization of almost every parameter of the proposed
FPGA IP Core depending on the problem. The proposed architecture synthesized and tested on Altera
DE2-115 board with approximately 12% logic elements utilization. Results are obtained from standard
optimization benchmark functions and the traveling salesman problem (TSP). In the hardware experi-
ments, the proposed FPGA IP Core has been found the global optimum solutions for all of the standard
benchmark functions and TSP. The clock cycle per generation value of the proposed FPGA IP Core has been
decreased up to approximately 95% when compared with the existing implementations. For the TSP case,
the proposed FPGA IP Core has reduced the run-time of the compared work approximately 75% and with
optimized parameters, the reducement reached approximately 99%. For all test cases, it is concluded that
the proposed core enhanced both the clock cycles needed to iterate one generation and the convergence
speed of the existing GA implementations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Genetic algorithm (GA), is a heuristic search technique based
on the natural selection process [1]. GA does not require any
mathematical (analytical) solution, therefore it can successfully be
applied to complex problems with wide solution space [2,3]. The
main purpose of GA is to find the optimal solution in a search
space by utilizing the iterative genetic evolution steps on individ-
uals of a population. At each step, GA updates its individuals by
using the genetic operations like crossover, mutation, elitism, etc.
The fitness value of each individual is calculated by using an objec-
tive function of the problem. Although GAs are not evaluating all
the possible solutions in the search space, time consumption of
GAs increases dramatically when the problem gets more compli-
cated. Consequently, the software based implementations of GAs
are not effective for real-time applications [4]. GAs have been
widely accepted as an optimization technique and used in the vari-
ety of problems including the NP-complete [5,6]. GAs have also

E-mail address: mpeker@ohu.edu.tr

been used in various fields like electromagnetics [7], food chemistry
[8], biology, and bioinformatics [9], etc.

In recent works, hardware based solutions are used to speed up
GAs [10–14]. By using a convenient design, hardware based imple-
mentations could reduce the execution time of the algorithms.
Therefore the parallel design capabilities of hardware make this
platform preferable for GA implementation. With the continual
improvements on logic resources of field programmable gate arrays
(FPGAs), it has been possible to implement efficient, customizable
and fast GA architectures. Also, FPGAs are cheaper and consume low
power compared to CPU and GPU based rivals. Besides, implement-
ing evolutionary algorithms on FPGA like GAs has the advantage of
producing specific hardware for special tasks [13] in the final prod-
uct stage. The GAs are suitable for hardware implementation as the
structure of chromosomes and genetic operators are very hardware
friendly.

This paper presents the details of the proposed fast, highly cus-
tomizable and extensible FPGA IP Core for general purpose genetic
algorithms. The proposed architecture synthesized and tested on
Altera’s Cyclone EP4CE115 device. The structure of the proposed
architecture is easy to integrate into different applications that
need a global search approach. Also, the structure is built to enable

https://doi.org/10.1016/j.asoc.2017.09.044
1568-4946/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2017.09.044
https://doi.org/10.1016/j.asoc.2017.09.044
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:mpeker@ohu.edu.tr
https://doi.org/10.1016/j.asoc.2017.09.044

Please cite this article in press as: M. Peker, A fully customizable hardware implementation for general purpose genetic algorithms,
Appl. Soft Comput. J. (2017), https://doi.org/10.1016/j.asoc.2017.09.044

ARTICLE IN PRESSG Model
ASOC-4491; No. of Pages 11

2 M. Peker / Applied Soft Computing xxx (2017) xxx–xxx

the adaptation of user-defined genetic operators and fitness func-
tion blocks. All modules of the proposed FPGA IP Core could be
changed with external module blocks except the GA controller
module. Therefore the proposed FPGA IP Core has the most cus-
tomizable architecture in literature.

One of the best features of the proposed design is paralleliza-
tion level can be selected by taking into consideration of the system
resources and complexity of the fitness function. If the paralleliza-
tion level increases, the system resource utilization and the speed
of the system increases. Contrarily, if the parallelization level is
reduced, resource utilization and the speed of the system decreases.
The balance of the speed and resource usage can be adjusted with
the system parameters by considering the complexity of the prob-
lem. However, the speed of the system is limited with the fitness
function’s computation time. Thanks to the flexible architecture of
the FPGA IP Core, chromosomes of the individuals can be designed
based on the problem. The proposed architecture makes it feasible
to handle a wide range of problems. In this paper, the proposed
FPGA IP Core is compared with recent works in literature in terms
of speed, efficiency, and resource usage.

The rest of the paper is organized as follows. In Section 2, brief lit-
erature reviews for hardware based parallel genetic algorithms are
given. Section 3 describes the design details of the proposed FPGA
IP core structure for general purpose genetic algorithms. Section
4 gives information for the implementation platform and experi-
mental results. Section 5 concludes the advantages and the results
with a brief summary of the proposed architecture.

2. Related work

GA begins with the creation of a random population of individ-
uals, and each individual specifies a solution in the search space.
This first generation, called initial population, is developed to pro-
duce better solutions using genetic operators such as selection,
crossover, mutation, etc. throughout the generations. In each gen-
eration, parents of the new offspring are selected to generate better
individuals by preserving the useful knowledge of the past genera-
tions. Genetic information which is carried by the selected parents
is mixed with the crossover operator to form new offspring. Then
the individuals that have the worst fitness values are replaced with
the new offspring to ensure the evolution to better generations.
Mutation operator which randomly changes the chromosomes of
individuals in the population is used to prevent the premature con-
vergence to the best solution in the generation. Evolution process
continues until the termination criteria such as the number of iter-
ations and the fitness value of the best solution are met.

Although the GA tries to find the optimal solution without the
need to compute all possible solutions, the complexity of the prob-
lem and the computational load of the genetic operators increase
the run-time of the software-based implementations [4]. There-
fore, in order to speed up GA-based applications, GA structures that
allow parallel processing are proposed in the literature. In compari-
son with software-based parallel GAs, hardware-based approaches
are more suitable because of the parallelization capabilities.

In the literature, many hardware based GA structures have been
proposed for general [11,15] and application-specific [16–19] pur-
poses. In this work, general purpose hardware implementations are
discussed since the application-specific approaches are not appli-
cable for other purposes.

Scott et al. [20] proposed a hardware-based genetic algo-
rithm (HGA) which was designed with parametrized modules by
using Very High Speed Integrated Circuits Hardware Description
Language (VHDL) to allow scalability and provide easy reimple-
mentation. The overall HGA design was implemented on multiple
Xilinx FPGAs on a BORG board which is connected to the bus of a

PC. The HGA used roulette wheel selection and one-point crossover
with a fixed population size of 16. Each individual in the population
had 3 bits length chromosomes. The main purpose of this work is
to reveal the issues that can be experienced in hardware-based GA
development.

Tommiska and Vuori [21] developed a general-purpose GA
system which utilized round robin parent selection, one-point
crossover and linear shift-register (LSHR) based random number
generator. The population size in this work was 32 and used a
PC card which is also connected to the bus of a PC to run the GA
system. The GA system was used for the optimization of routing
in telecommunications networks to show this system could be
used in real-time applications to gain speed-up when compared
to software-based approaches.

Yoshida et al. [22] proposed a VLSI hardware design for genetic
algorithm processor (GAP) that uses simplified tournament selec-
tion scheme. The design is used for data partitioning problem.

Aporntewan et al. [23] implemented a compact GA using Verilog
HDL. A hardware linkage learning is also proposed in [23] in order
to enhance the capability to solve highly deceptive problems.

Shackleford et al. [24] presented a general-purpose pipeline GA
implementation that used a survival based selection. This imple-
mentation is used for the set covering problem and the protein
folding problem.

Tang and Yip et al. [25] proposed a hardware implementation of
GA using FPGAs which are connected to the bus of a PC. The imple-
mentation shows that the utilization of parallel GA architectures is
possible by using different communication ports such as PCI bus or
on board communication ports on a PC.

Fernando et al. [15] presented a GA IP core which is customizable
in terms of the population size, number of generations, crossover
and mutation rates, random number generation seed and the fit-
ness function. The design was implemented and tested on Xilinx
Virtex II Pro FPGA device (xc2vp30-7ff896). The performance of
this GA core was within 3.7% of the global optimal solution.

Kamimura et al. [26] demonstrated a parallel processor for dis-
tributed genetic algorithm (dGA) with redundant binary number.
Their goal was to reach the optimal solution faster with redun-
dant binary number which gives diversity. In this work, Virtex4
(xc4vlx25) FPGA board was used for the implementation of dGA.

Dos Santos et al. [17] described a cellular GA (cGa) on Virtex 6
FPGA board. In this work, GA has been built up from 5 × 5 array of
problem-specific processing elements (PEs). They applied the cGA
to a spectrum allocation problem in cognitive radio networks. The
cGA was compared to a software version running on a PC and a
MicroBlaze soft processor. The speedup was 95% of the PC version
and 99% of the MicroBlaze soft processor.

Guo et al. [11] proposed a framework in which the GA is gener-
ated with a customization engine written in Python. The speed of
the generated GA is compared with CPU based implementation of
GA. The mean value of run-time enhancement was 96% of the CPU
implementation. The design was implemented on Virtex 6 SX475T
FPGA device.

Comparisons of these recently proposed general purpose GA
designs are summarized by Fernando et al. [15]. The extended
version of these comparisons with the updated literature and the
proposed implementation is given in Table 1.

There are also ASIC implementations [27,10] which are focused
on improving the speed of GA by using hardware acceleration. Chen
et al. [27] developed a GA chip with 0.18�m cell library. A software
is developed called Smart GA to change the GA network structure.
Hoseini Alinodehi et al. [10] developed a CMOS implementation for
steady-state genetic algorithm processor (GAP) implementation in
0.18 �m process. One GAP implementation could support a search
space defined by 32-bit genetic population. They also developed

https://doi.org/10.1016/j.asoc.2017.09.044

Download English Version:

https://daneshyari.com/en/article/6904364

Download Persian Version:

https://daneshyari.com/article/6904364

Daneshyari.com

https://daneshyari.com/en/article/6904364
https://daneshyari.com/article/6904364
https://daneshyari.com

