
Applied Soft Computing 61 (2017) 1125–1138

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

Full length article

Robust optimization using Bayesian optimization algorithm: Early
detection of non-robust solutions

Marjan Kaedia, Chang Wook Ahnb,∗

a Faculty of Computer Engineering, University of Isfahan, Hezar-Jerib Ave., Isfahan 81746-73441, Iran
b School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju
61005, Republic of Korea

a r t i c l e i n f o

Article history:
Received 7 August 2015
Received in revised form 1 March 2017
Accepted 26 March 2017
Available online 31 March 2017

Keywords:
Robust optimization
Bayesian optimization algorithm
Bayesian networks
Probabilistic robustness evaluation

a b s t r a c t

Probabilistic robustness evaluation is a promising approach to evolutionary robust optimization; how-
ever, high computational time arises. In this paper, we apply this approach to the Bayesian optimization
algorithm (BOA) with a view to improving its computational time. To this end, we analyze the Bayesian
networks constructed in BOA in order to extract the patterns of non-robust solutions. In each generation,
the solutions that match the extracted patterns are detected and then discarded from the process of
evaluation; therefore, the computational time in discovering the robust solutions decreases. The experi-
mental results demonstrate that our proposed method reduces computational time, while increasing the
robustness of solutions.

© 2017 Published by Elsevier B.V.

1. Introduction

In many real-world optimization problems, uncertainty is often
unavoidable [1]. In these problems, after finding the optimal solu-
tion (i.e., after finding the best values for the design variables), the
values of the design variables or the environmental variables may
slightly change. If the optimal solution is very sensitive to these
changes, slight alterations in the design or environmental variables
lead to significant reduction in the quality of the solution [1]. There-
fore, the optimal solution cannot be used in practice [2,3]. Problems
such as scheduling, vehicle routing optimization, and engineering
design are examples of the situations [4–8]. In these situations, a
solution which is not just optimum but also robust, should be found
[8,9]. A robust solution can be thought of as a solution that can
tolerate slight variation in design variables or environmental vari-
ables, and its quality does not significantly change with any minor
alteration in the condition for which it was designed [6,10–12].

In this paper, we focus only on the change of design variables.
In this case, a robust solution is defined as a solution that has
high quality while the solutions in its neighborhood (i.e., solutions
that are similar to it but slightly differ in some design variables)
also have high quality [13]. To find a robust solution, the robust-
ness of the candidate solutions should be evaluated and considered

∗ Corresponding author.
E-mail addresses: kaedi@eng.ui.ac.ir (M. Kaedi), cwan@gist.ac.kr (C.W. Ahn).

in the process of searching for the optima. This objective can be
accomplished in two ways [11,14]. First, the objective function
of the optimization problem can be replaced with a new objec-
tive function that simultaneously evaluates both the performance
and robustness of the solutions. Second, a new objective function
can be added whose responsibility is to evaluate the robustness of
the solutions. As such, the optimization problem is converted to a
multi-objective optimization problem.

In evaluating the robustness of a solution, there are two
approaches: probabilistic and deterministic [11,14]. In the proba-
bilistic approach, the probable changes that may occur in the future
are considered, and the expected performance of the solution in all
of the probable situations is calculated. This approach is appropri-
ate for maximizing the average performance. In the deterministic
approach, the worst situation (i.e., the worst change) that is likely to
occur is considered, and a solution which behaves well in this worst
case, is sought. In other words, the ‘best worst-case performance’
solution should be found. This approach is appropriate when the
decision-maker is very risk averse or the situation risk is high [5].

Evolutionary algorithms have proven successful in finding
robust solutions using the probabilistic robustness evaluation
approach [11,15]. In these methods, in the fitness evaluation
stage, the expected performance of each solution is considered as

http://dx.doi.org/10.1016/j.asoc.2017.03.042
1568-4946/© 2017 Published by Elsevier B.V.

dx.doi.org/10.1016/j.asoc.2017.03.042
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2017.03.042&domain=pdf
mailto:kaedi@eng.ui.ac.ir
mailto:cwan@gist.ac.kr
dx.doi.org/10.1016/j.asoc.2017.03.042

1126 M. Kaedi, C.W. Ahn / Applied Soft Computing 61 (2017) 1125–1138

the solution’s fitness. In probabilistic robustness evaluation, the
expected fitness of solution x is defined as follows [11]:

fexp(X) =
∫ ∞

−∞
f (X + ı).p(ı) dı (1)

where X denotes a design vector (i.e., a solution) of dimension d,
f(X) is the fitness of that solution, and ı is a disturbance that is
distributed according to the probability density function p(ı).

Unfortunately, f is not available for many of the complex prob-
lems; therefore, Eq. (1) cannot be analytically computed for them
[11]. Alternatively, fexp should be estimated. The most common
approach for estimation of fexp is Monte Carlo integration (e.g., as
used in [13,16,17]). To perform this estimation, a number of points
in the neighborhood of solution x should be randomly sampled (i.e.,
sampling over a number of realizations of �) [11,13]. This approach,
known as the explicit averaging, requires a large number of addi-
tional fitness evaluations because each sample corresponds to one
fitness evaluation [1]. Therefore, if the fitness evaluation is expen-
sive, this approach is slow and impractical [11,13,18]. A number of
methods have been proposed in the literature to reduce the num-
ber of fitness evaluations in the explicit averaging approach. These
methods are reviewed in Section 2.

In this paper, we present a new method to reduce the number
of fitness evaluations in the explicit averaging approach in evolu-
tionary algorithms. In our proposed method, we present a heuristic
method to detect the non-robust solutions, specifically the solu-
tions that seem to be sensitive to changes in design variables. Once
these non-robust solutions are detected, they are discarded from
the process of finding their expected performance because they
are not promising as the final solution. The expected fitness of the
remaining solutions is then calculated through the explicit averag-
ing, and the robust solutions are selected to be reproduced in the
next generation.

Among all evolutionary algorithms, we focus on the Bayesian
optimization algorithm (BOA) in our proposed method. There are
two reasons in selecting BOA. For one thing, BOA is an estimation
of distribution algorithm (EDA), which applies Bayesian networks
to evolve the solution population. In BOA, the Bayesian network
contains abstract knowledge about the problem’s solutions. This
knowledge can be useful for detecting sensitive solutions. Second,
to the best of our knowledge, no other research has been accom-
plished on applying BOA to find robust solutions. Of course, most of
the methods presented for finding robust solutions through genetic
algorithms can be applied to BOA. However, no method has been
presented to apply the specific BOA features to find the robust
solutions.

The rest of this paper is organized as follows. In Section 2, previ-
ous works related to computational time reduction of the explicit
averaging method are reviewed. In Section 3, the BOA is described.
Our proposed method for reducing the computational time of the
explicit averaging method in BOA is presented in Section 4. In Sec-
tion 5, our proposed method is evaluated and the experimental
results are reported. Conclusions are presented in Section 6.

2. Related works

Averaging over samples in the neighborhood of a solution (i.e.,
explicit averaging) is a common approach that has been used for
evaluating the robustness degree of solutions (e.g., [16,17,19–21]).
However, the explicit averaging has the drawback of requiring a
large number of fitness evaluations, which leads to increasing the
computational time. Several methods have been presented so far to
decrease the computational time needed for fitness evaluations in
the explicit averaging. These methods have been classified in three
groups [5,11]. In this section, we review these works.

2.1. Reducing the number of neighbors that should be sampled
and evaluated

In the first group of methods, some sophisticated sampling tech-
niques are used to generate some samples in the neighborhood of a
solution. In this way, fewer but targeted samples can be produced
and evaluated in the neighborhood of each solution. Therefore,
the time needed for approximating the expected fitness of each
solution can be reduced. In [22,23], the chance-constrained genetic
algorithm is presented. It employs Latin hypercube sampling (LHS)
to produce the neighbors of each solution. Compared to standard
Monte Carlo sampling, using LHS was shown to result in the use of
smaller sample sizes. Being inspired by this research, other smart
sampling methods have been presented based on LHS to reduce the
number of neighbors that should be sampled [24,25].

As another idea, in [1], the polynomial chaos that is a polynomial
representation of a Gaussian random process has been used for
sampling the solutions.

2.2. Reducing the number of solutions that should be sampled
and evaluated

In this group of methods, the solutions that appear more promis-
ing are detected. The focus then primarily becomes finding the
expected fitness of these promising solutions; therefore, by approx-
imating the expected fitness of only the promising solutions, the
time in finding the robust solution is reduced. Detection of the
promising solutions (i.e., the solutions that seem to be robust) can
be accomplished on the basis of criteria such as solution fitness [13]
or solution fitness variance [26].

2.3. Accelerating the fitness evaluation of each solution

Acceleration of the fitness evaluation of solutions can be
achieved by two approaches. One is to avoid the redundant evalu-
ation of the repetitive solutions. For example, the former solutions
and their evaluations can be stored in memory and then applied
for estimating the evaluation of the current solutions [26]. The sec-
ond approach is to construct the local approximation model for
the fitness function and estimate the expected fitness of solutions
[11,27–31]. This approximation model is called meta-model or sur-
rogate [27].�

In some researches, a hybrid method is proposed by combining
the three mentioned approaches. For example, in [25] an archive
of the evaluated solutions has been used to accelerate the fitness
evaluation, the full neighborhood of only the high fitness solutions
have been sampled, and LHS has been used as the sampling method.

Our proposed work places in the second approach. For evo-
lutionary robust optimization, BOA was selected as a successful
evolutionary algorithm. In our method, we strive to reduce the
number of solutions that should be evaluated when we want to
find the robust solution via BOA.

3. Bayesian optimization algorithm

BOA evolves a population of candidate solutions by constructing
Bayesian networks and sampling them [32,33]. A Bayesian network
is a directed acyclic graph (DAG) that represents probabilistic rela-
tionships among a set of random variables. In this graph, each node
is related to a variable and the edges correspond to conditional
dependencies. A set of conditional probability tables is used for
presenting the conditional dependencies of variables [34].

BOA randomly constructs the initial population with a uni-
form distribution for all possible solutions. The population is then
updated in several iterations. Each iteration consists of five stages

Download English Version:

https://daneshyari.com/en/article/6904383

Download Persian Version:

https://daneshyari.com/article/6904383

Daneshyari.com

https://daneshyari.com/en/article/6904383
https://daneshyari.com/article/6904383
https://daneshyari.com

