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a  b  s  t  r  a  c  t

This paper  studies  three  techniques  for outliers  detection  in the context  of  Wireless  Sensor  Networks,
including  a machine  learning  technique,  a Principal  Component  Analysis-based  methodology  and  an
univariate  statistics-based  approach.  The  first  methodology  is based  on  a Least  Squares-Support  Vector
Machine  technique,  together  with  a sliding  window  learning.  A  modification  to this  approach  is  also
considered  in  order  to  improve  its  performance  in non-stationary  time-series.  The  second  methodology
relies  on  Principal  Component  Analysis,  along  with  the  robust  orthonormal  projection  approximation
subspace  tracking  with  rank-1  modification,  while  the  last  approach  is  based  on univariate  statistics
within  an  oversampling  mechanism.  All  methods  are  implemented  under  a  hierarchical  multi-agent
framework  and  compared  through  experiments  carried  out  on  a test-bed.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

A Wireless Sensor Network (WSN) is a network comprising tiny,
low-cost and low energy sensor nodes, connected to one or more
sink devices. Each node is, usually, provided with a wireless radio
transceiver, a small micro-controller, a power source and multi-
type sensors, such as temperature, humidity or pressure. It can
also include analogue-to-digital converter (ADC) and/or digital-to-
analogue converter (DAC) ports, as well as a variety of network
services, namely localisation, coverage, synchronization, data com-
pression and aggregation, or even security mechanisms [25,27].

This kind of infrastructure is becoming increasingly popular
in a number of fields and applications, such as in environmental
contexts, habitat or health monitoring, or in military surveillance
activities, just to name out a few (see e.g. [22,18]). Because of
their inherent constraints, in particular power autonomy, mem-
ory, computational power and communication bandwidth, raw
data collected from WSNs are quite often unreliable and inaccu-
rate [2,11]. These inaccuracies, generically referred to as outliers
in the context of this work, can be regarded as measurements that
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significantly deviate from the normal pattern of sampled data [28].
For this reason it is recommended that raw data collected through
wireless sensor nodes should be purged from outliers.

Outliers detection techniques designed to be implemented on
WSNs nodes should have a high detection rate and a low false alarm
rate, while presenting a parsimonious consumption of resources.
A number of detection methods have been proposed in the last
few decades. They can be classified according to the underlying
techniques, the network structure or even the type of outliers they
can detect (see e.g. [26,25,21]). In what the state-of-the-art recur-
sive methods are concerned, they have not been, to the best of the
authors’ knowledge, assessed regarding their implementability on
sensor nodes and the underlying performance in the context of
monitoring systems over WSN, where collected data is quite often
non-stationary.

In order to shed some light on this issue, the present work
evaluates three different approaches for online detection and
accommodation of outliers in raw data over WSNs under a hierar-
chical multi-agent system based framework. The first approach is
a Machine Learning technique relying on a Kernel-based method-
ology, namely the Least Squares (LS)-Support Vector Machine
(SVM), along with an online sliding window scheme [17]. This
choice is to some extent motivated by the fact that they do not
demand the definition of a probability density function (p0) for a
given hypothesis, they provide computationally efficient decision
functions, and they can be applied in high dimensional data sets
[7]. To improve the LS-SVM’s performance in non-stationary
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conditions, the present work considers a modification to the
standard method, characterised by redefining the Gaussian kernel.
The second methodology relies on Principal Component Analysis
(PCA), which usually has a high computational complexity due to
the expensive eigendecomposition (ED). To reduce the underlying
complexity, this work follows an approach based on a recursive
subspace tracking scheme, namely the orthonormal projection
approximation subspace tracking (PAST) (OPAST) algorithm [4], as
the major subspace is only recursively tracked by using a rank-1
modification. This method is referred to as robust OPAST with
rank-1 modification (OPASTr). The last methodology is based
on Univariate Statistical Analysis, commonly used in Shewhart
control charts. In order to improve its consistency, this technique
is implemented under an oversampling framework.

The remainder of this paper is organized as follows. Section 2
presents an introduction to the LS-SVM approach, describes the
training algorithm used for online implementation, and presents
the proposed modification so as to improve the detection per-
formance in transient time-series. Section 3 provides a brief
description with regard to the second technique based on PCA,
while Section 4 presents the methodology based on Univariate Sta-
tistical Analysis. Section 5 gives a brief overview on the multi-agent
framework deployed on the sensor nodes, while Section 6 presents
some results and Section 7 concludes this work.

2. Machine learning approach

This section provides a brief introduction to the machine learn-
ing technique and describes the proposed modification to improve
its performance in transient time-series. The reader is referred to
[7] and references therein for a comprehensive description of the
standard approach.

2.1. LS-SVND algorithm

The Support Vector Novelty Detection (SVND) method deals
with the problem of given a set of vectors X = {x1, . . .,  xm} ∈  Xm,
such that the sequence xi, i = 1, . . .,  m ∼ p0 (with p0 unknown) and
two hypotheses H0 and H1, categorising a new reading x ∈ X, with
identical probability density function p0, under the underlying two
hypotheses. This problem is addressed by defining a decision func-
tion f (x) ∈ S ⊂ X  and a real number b, such that f(x) − b ≥ 0 if x ∈ S
(x is “normal”), and f(x) − b < 0 if x is an outlier. The decision function
is designed taking into account the following two constraints:

• Most of the training vectors are assumed to be normal (X ∈ S),
except for a small subset of outliers;
• The bound that surrounds the uncorrupted data should be as

small as possible, that is S ⊂ X  should have minimum volume.

Based on these constraints, the space of possible functions f(x) is
reduced to a Reproducing Kernel Hilbert Space (RKHS) (see e.g.
[12,23]), with kernel function k(· , ·). This RKHS can be selected
by first considering a positive definite kernel function k( · , · ) :
X  × X  → R. A common choice for the kernel function is the Gaussian
Radial Basis Function (RBF) [13], given as:

k(x1, x2) = exp
[
− 1

2�2
‖x1 − x2‖2

]
(1)

where ‖· ‖ represents the canonical norm.
It should be mentioned that a positive definite kernel k(· , ·)

induces a RKHS, that is a linear space of functions F represented
by a dot product and denoted as 〈 · , · 〉F, with the corresponding
norm denoted as ‖ · ‖F. In addition, F is complete in this norm,
and for any f ( · ) ∈ F the reproducing property holds, namely
〈k(x, · ), f ( · )〉F = f ( · ).

For a positive definite kernel and the corresponding RKHS F,
the SVND method provides the function f(x) as the solution to the
following convex optimisation problem, with 0 < � < 1 [7]:

max
f ( · ) ∈ F,ei,b
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2
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e2
i + b

subject to f (xi) − b = −ei, ei ≥ 0

(2)

In (2) the slack variables ei, along with the constraints, guarantee
that the underlying decision function fx(·) fits the training data,
which implies that almost all the training data are located inside
the region S. The samples xi lying outside this region are assumed
to be outliers. Further, the number of outliers is kept low by min-
imizing the term

∑m
i=1e

2
i
, while the term ‖f(.) ‖ 2 ensures that the

second constraint holds, which results in a minimum volume for S.
The dual minimisation problem associated with (2) is obtained

by appealing to a set of Lagrange multipliers  ̨ = {˛1, . . .,  ˛m}, with
the Lagrangian given as:

L = 1
2
‖f (.)‖2 + 1
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i − b −

m∑
i=1

˛i[f (xi) − b + ei] (3)

By computing the Lagrangian’s partial derivatives with respect to
f(x), b, ei and ˛i, and setting them equal to zero, it follows that,

∂L
∂f (.)

= 0 ⇒ f (.) =
m∑
i=1

˛ik(xi, .) (4)
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= 0 ⇒
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∂L
∂ei
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2
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∂L
∂˛i
= 0 ⇒ f (xi) − b + ei = 0 (7)

The above four equations can be rewritten as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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(8)

In a compact form (8) can be described by the following matrix
equation:[

0 I

−IT H

] [
b

˛

]
=
[
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1

]
(9)

where I and  ̨ are vectors with length m,  while H is a square matrix
of size m × m,  as follows:

I = [1·  · ·1] (10)

 ̨ = [˛1· · ·˛m]T (11)

H =

⎡
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k(x1, x1) + �m

2
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...
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...
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2

⎤
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