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a  b  s  t  r  a  c  t

The  minimum  vertex  cover  problem  is a classical  combinatorial  optimization  problem.  This  paper  studies
this  problem  based  on rough  sets.  We  show  that  finding  the  minimal  vertex  cover  of  a  graph  can  be
translated  into  finding  the  attribute  reduction  of  a decision  information  table.  At  the  same  time,  finding
a  minimum  vertex  cover  of graphs  is equivalent  to finding  an optimal  reduct  of a  decision  information
table.  As  an  application  of  the  theoretical  framework,  a  new  algorithm  for the  minimum  vertex  cover
problem  based  on rough  sets  is  constructed.  Experiments  show  that  the  proposed  algorithm  gets  better
performance  in terms  of  the ratio  value  when  compared  with  some  other  algorithms.

©  2016  Published  by  Elsevier  B.V.

1. Introduction

Graph theory is a useful tool for data analysis and knowledgeQ4
representation in computer science. The minimum vertex cover
problem (MVCP) is a classical graph optimization problem, which is
to find a minimal vertex cover with the least number of vertices [6].
Except the application in graph theory, MVCP also has been used in
a wide variety of real-world applications, such as crew scheduling
[42], VLSI design [3,23], nurse rostering [7] and industrial machine
assignments [55].

As shown in [5,15,32], the minimum vertex cover computa-
tion can be translated into the calculation of prime implicants of a
Boolean function. Although one can generate all the minimal vertex
covers (or a minimum vertex cover) of a graph by using the Boolean
operation, it is a well known NP-hard optimization problem [15,27].
There are a number of approximation algorithms that have been
proposed for this problem in the literature [1,2,14,18,20–22,35]. In
[19], Gomes et al. conducted a comparative study of three approxi-
mation algorithms for MVCP via some numerical experiments. The
results showed that the Greedy algorithm was faster than both the
Round and Dual-LP algorithms, and it also had a superior perfor-
mance on the ratio value. Avis and Imamura proposed a simple
and effective approximation algorithm called the list heuristics for
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MVCP [1]. In recently, a competent algorithm called Vertex Support
Algorithm (VSA) was proposed for efficiently solving MVCP [2].

Rough set theory is another effective tool for data analysis and
knowledge discovery. The notion of attribute reduction plays an
important role in the theory of rough sets. An attribute reduct is a
minimal subset of attributes that provides the same classification
ability as the whole set of attributes [36,37]. So far, it has been
widely used in pattern recognition [25,26,45], knowledge discovery
[65] and machine learning [31].

Many approaches have been proposed for the attribute reduc-
tion [9,10,30,33,56,57,59]. A beautiful theoretical result is based
on the notion of a discernibility matrix. Skowron and Rauszer
[43] showed that the set of all reducts is in fact the set of prime
implicants of the discernibility function. However, as was shown
by Wong [54], finding the set of all attribute reducts or an opti-
mal  reduct (a reduct with the minimum number of attributes), is
an NP-hard problem. Various heuristic methods for the attribute
reduction such as positive-region methods [24,39], information
entropy methods [29,38,44,51,58,63] and discernibility matrix
methods [8,40,49,50] have been developed.

As we  have discussed above, attribute redacts and minimal ver-
tex covers can be obtained via the Boolean logical operation. It
seems that there is some kind of natural connection between the
two problems. The purpose of this paper is mainly to study MVCP
based on rough sets. In fact, Wang et al. [52] studied MVCP from
a viewpoint of covering-based rough sets. However, they did not
propose any efficient algorithm for MVCP. Kulaga et al. investigated
the attribute reduction of a consistent decision table based on graph
theory [28]. The framework proposed in this paper is quite different
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from that of [28,52]. We  show that the problem of finding the min-
imal vertex cover of a graph is equivalent to the problem of finding
the attribute reduction of a decision information table. Also, find-
ing a minimum vertex cover of graphs is equivalent to finding an
optimal reduct of its decision information table. What’s more, we
present an effective algorithm based on rough sets for MVCP. This
study may  open new research directions and provide new methods
for MVCP.

The remainder of this paper is organized as follows. In Section
2, some basic notions related to rough sets and graph theory are
introduced. In Section 3, a new decision information table induced
from a given graph is constructed, and the relationship between the
attribute reduction of the derivative decision information table and
the minimal vertex cover of the graph is studied. In Section 4, a new
approximate algorithm for MVCP based on rough sets is presented.
Some numerical experiments are given to show the effectiveness
of the proposed method in Section 5. Finally, some conclusions are
drawn in Section 6.

2. Preliminaries

In this section, we briefly introduce some basic notions and
results about rough sets and graph theory [6,37,46].

2.1. Vertex covers in graph theory

A graph is a pair G = (V, E) consisting of a set V of vertices and a set
E of edges such that E ⊆ V × V. Two vertices are adjacent if there is an
edge joining them, and the vertices are then incident with such an
edge. Two or more edges that link the same pair of vertices are said
to be parallel edges. An isolated vertex is a vertex not adjacent to
any other vertex. A loop is an edge with the same ends. The edge of
a graph may  be directed (asymmetric) or undirected (symmetric).
An undirected graph is one in which the edges are symmetric.

A vertex cover of a graph G is a subset K ⊆ V such that every edge
of G has at least one end in K. A vertex cover is minimal if none of its
proper subsets is itself a vertex cover. A minimum vertex cover is
a vertex cover with the least number of vertices. Note that a mini-
mum  vertex cover is always minimal but not necessarily vice versa.
Observe that a minimal vertex cover is not necessarily unique, it is
also true for the minimum vertex cover. All the minimal vertex
covers of a graph can be obtained via Boolean formulaes.

Given a graph G = (V, E) and e ∈ E, let N(e) denote a set of vertices
connected by the edge e. Denote N  = {N(e)|e ∈ E}. Now we  define a
function fG for G as follows, which is a Boolean function of m Boolean
variables v∗1, v∗2, · · ·, v∗m corresponding to the vertices v1, v2, · · ·,  vm,
respectively.

fG(v∗1, v∗2, · · ·,  v∗m) = ∧{∨N(e)|N(e) ∈ N},

where ∨N(e) is the disjunction of all variables v∗ such that v ∈ N(e).
The following lemma  gives a method for computing the minimal

vertex covers of a given graph.

Lemma  1 (([15,32]).). LetG = (V, E)be a graph. A vertex subsetK ⊆ Vis a
minimal vertex cover of G iff

∧
vi ∈ K v∗

i
is a prime implicant of the Boolean

functionfG.

Lemma  1 shows that if

fG(v∗1, v∗2, · · ·,  v∗m) = ∧{∨N(e)|N(e) ∈ N} =
∨t

i=1
(
∧si

j=1
v∗j ),

where
∧si

j=1v∗
j
, i ≤ t, are all the prime implicants of the Boolean

function fG, then Ki = {vj|j ≤ si}, i ≤ t, are all the minimal vertex cov-
ers of G. The set of all minimal vertex covers of a graph G is denoted
by C(G). We  will also write vi instead of v∗

i
in the discussion to follow.

Fig. 1. The graph of Example 1.

Example 1. Let G = (V, E) be the following graph with V =
{v1, v2, v3, v4} and E = {e1, e2, e3, e4, e5, e6} (Fig. 1).

We have the Boolean function:

f G(v1, v2, v3, v4) = (v1 ∨ v2) ∧ (v2 ∨ v3) ∧ (v1 ∨ v3) ∧ (v1 ∨ v4) ∧
(v1 ∨ v4) ∧ v3.

After simplification, we  have fG in prime implicants as:

f G(v1, v2, v3, v4) = (v1 ∧ v3) ∨ (v2 ∧ v3 ∧ v4).

Hence G has two minimal vertex covers: K1 = {v1, v3} and K2 =
{v2, v3, v4}. K1 is the unique minimum vertex cover.

2.2. Attribute reduction with rough sets

An information table can be seen as a pair S = (U, A), where U and
A, are finite, non-empty sets called the universe (a set of objects)
and the set of attributes, respectively. With each attribute a ∈ A,
we define an information function a : U −→ Va, where Va is the set
of values of a, called the domain of a.

Each non-empty subset B ⊆ A determines an indiscernibility
relation:

RB = {(x, y) ∈ U × U|a(x) = a(y), ∀a ∈ B}.
Obviously, RB is an equivalence relation on U, it forms a par-

tition U/B = {[x]B|x ∈ U}, where [x]B denotes the equivalence class
containing x w.r.t. B, i.e., [x]B = {y ∈ U|(x, y) ∈ RB}.

Let B ⊆ A and X ⊆ U, the two  sets

BX = {x ∈ U|[x]B ⊆ X}, BX = {x ∈ U|[x]B ∩ X /= ∅},
are called the lower and the upper approximation of X w.r.t. B,
respectively. The lower approximation BX is also called the positive
region of X.

A decision table is a special information table with the form
S = (U, A ∪ {d}), where (U, A) is an information table and d /∈ A. Usu-
ally, A is called the conditional attribute set and d is the decision
attribute. Suppose U/d = {D1, D2, · · · , Dr} are the equivalence classes
induced by d. The positive region of d w.r.t. B, denoted by POSB(d),
is defined as POSB(d) =

⋃r
i=1BDi.

Given a decision table S = (U, A ∪ {d}), an attribute subset B ⊆ A is
a reduct (also called a relative reduct) of S if B is a minimal set such
that POSB(d) = POSA(d). Various approaches to attribute reduction
have been proposed in the literature. For our purpose, we  introduce
the following method based on the discernibility matrix and logical
operation [43]. By the discernibility matrix method, one can get all
the reducts of a decision table.

Let S = (U, A ∪ {d}) be a decision table with n objects and (x, y) ∈
U × U. We  define

M(x, y) =
{
{a ∈ A|a(x) /= a(y)}, (x, y) ∈ DIS,

∅, otherwise,

where DIS is the set consisting of (x, y) ∈ U × U satisfying one
of the following conditions: (1) x ∈ POSA(d) and y /∈ POSA(d); (2)
x /∈ POSA(d) and y ∈ POSA(d); (3) x, y ∈ POSA(d) and d(x) /= d(y). M(x,
y) is referred to as the discernibility attribute set of x and y in S,
and M = {M(x, y)|(x, y) ∈ U × U} is called the discernibility set of
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