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a  b  s  t  r  a  c  t

The  fixed  charge  problem  is  a special  type  of  nonlinear  programming  problem  which  forms  the  basis
of  many  industry  problems  wherein  a  charge  is  associated  with  performing  an  activity.  In real  world
situations,  the  information  provided  by the decision  maker  regarding  the  coefficients  of the  objective
functions  may  not  be of  a precise  nature.  This  paper  aims  to  describe  a solution  algorithm  for  solving  such
a  fixed  charge  problem  having  multiple  fractional  objective  functions  which  are  all  of a fuzzy  nature.  The
enumerative  technique  developed  not  only  finds  the  set  of  efficient  solutions  but  also  a  corresponding
fuzzy  solution,  enabling  the  decision  maker  to operate  in the range  obtained.  A  real  life  numerical  example
in  the  context  of  the ship  routing  problem  is  presented  to  illustrate  the  proposed  method.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The fixed charge problem is one of the interesting applications of the mixed
integer programming problem having a practical use both in business and industry
and was  initialized by Hirsch and Dantzig in 1968 [13]. In this nonlinear program-
ming problem, there is a cost associated with performing an activity at a nonzero
level which does not depend on the level of the activity. The existence of these fixed
charges associated with the activities in the objective function produce a nonlin-
ear  programming problem. The fixed charges may  be expressed as a measure other
than cost, such as the setup time of getting a machine into service. Up to now, it has
been  widely applied in many decision-making and optimization problems like the
warehouse or plant location decisions, wherein there is a charge associated with
opening the facility; in transportation problems where there are fixed charges for
transporting goods between supply points and demand points.

Only a few exact methods for solving it are present in literature. Based on the
branch and bound method, Steinberg [20] provided an exact method for small
problems. On the other hand, various approximate solution methods have been
developed by Cooper [7], Murty [18], Cooper and Drebes [8], Walker [21] based on
adjacent extreme point algorithms. In more recent times, the emphasis has shifted to
the study of the fixed cost transportation problem which is mainly solved by ranking
of  the extreme points and the branch and bound method. This is because the prob-
lem reduces to that of minimising a concave function over a bounded convex set.
The  resulting optimum is taken at one or more of the extreme points of the feasible
region; but for a non-degenerate problem with positive fixed costs, every extreme
point of the feasible region is a local minimum. In [1], Adlakha and Kowalski use
the Balinski approximation method introduced for the fixed charge transportation
problem and apply the same for solving the fixed charge problem.

A  natural generalization of the linear objective function is a problem having
a  linear fractional (or hyperbolic) objective function, giving rise to the fractional
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programming problem which involves the optimization of one or several ratios of
functions subject to some constraints [5,19]. Such objectives arise in economical
models when the goal is to optimize profit per unit investment type functions. In
some  applications where the efficiency of a system is to be optimized, the efficiency
may  be characterized by a ratio of technical and/or economical terms which leads to
a  fractional program. In 1971, Almogy and Levin [2] introduced the fractional fixed
charge problem which arises in numerous applications, where the measure of eco-
nomic performance is the time rate of earnings or profit (equivalent to an interest
rate on capital investment). They discussed its application to the ship routing prob-
lem by optimizing the profit per unit time over a given route. The criteria then for
choosing a route is that the resulting profit per unit time exceeds the fixed cost per
unit time at the port from where all routes originate and terminate. Recent applica-
tions of the fixed charge problem having the dual concept of fixed and variable cost
have  been seen in the network design flow problems [12] and the facility location
problems [10]. Also, Arora [3] developed a systematic extreme point enumeration
technique, which provides an exact solution to the fixed charge problem.

In the fixed charge problem though, the parameters in the objective are sup-
plied according to the decision makers’ requirements, who in most cases is unable
to  provide this precise information. In such a case, we  formulate them as fuzzy num-
bers,  in other words the objective function can be fuzzified and a leverage is provided
to  the decision maker to operate. To the authors’ knowledge, no work has yet been
done in developing a solution procedure for solving a multiobjective fixed charge
problem with linear fractional objective functions having fuzzy parameters. In this
paper we  intend to provide the required algorithm and a fuzzy solution for the same.
Preliminary concepts of fuzzy numbers are studied in Section 2.  The problem under
discussion is formulated, and related concepts of Pareto efficiency are defined in Sec-
tion  3. The algorithm developed in Section 4 is supported by a real life numerical
example in the context of the ship routing problem in Section 5.

2. Fuzzy numbers

In this section we  review some fundamentals of fuzzy numbers
and ranking functions which will be used through the remainder
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of this paper. We  shall use the most common definition of a fuzzy
number given by Dubois and Prade [9].

Fuzzy number. A fuzzy number Ã is a convex normalized fuzzy set
of the real line R  such that:

(i) ∃ unique x0 ∈ R  such that �Ã(x0) = 1, and
(ii) �Ã is piecewise continuous.

Triangular fuzzy number. A fuzzy number Ã is a triangular fuzzy
number if its membership function �Ã is of the form

�Ã(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x − a

b − a
, a ≤ x ≤ b

x − c

b − c
, b ≤ x ≤ c

0, otherwise

where a, b and c are real numbers. It is denoted by Ã = (a, b, c).
Let us denote the set of fuzzy numbers by F(R). The basic arith-

metic operations between two triangular fuzzy numbers are given
below [15].

Let Ã = (a, b, c), B̃ = (x, y, z) ∈ F(R), then

(i) Addition: (Ã ⊕ B̃) = (a + x, b + y, c + z).
(ii) Scalar multiplication:

(k ⊗ Ã) =
{

(ka, kb, kc)  if k > 0

(kc, kb, ka)  if k < 0

(iii) Multiplication: (Ã ⊗ B̃) = (min{ax, az, cx, cz},  by, max{ax, az,
cx, cz})

(iv) Division: (ÃøB̃) = (min{a/x, a/z, c/x, c/z}, b/y, max{a/x, a/z,
c/x, c/z}).

(v) Non-negativity: Ã is said to be a non-negative triangular fuzzy
number iff a ≥ 0.

Since two fuzzy numbers cannot be compared due to the
absence of any linear ordering in the set F(R), a simple concept
of ranking functions is employed for such a comparison. A ranking
function is a mapping R : F(R) → R  which maps each fuzzy number
into a point on the real line where a natural order exists. Baas and
Kwakernaak [4] are among the pioneers in this area. Several meth-
ods of ranking fuzzy subsets have been proposed and comparisons
of these methods have been reported in [6,11]. In this paper we
consider the ranking of triangular fuzzy numbers using the con-
cept of total integral value given by Liou and Wang [17]. The left
integral value is used to reflect the pessimistic viewpoint and the
right integral value is used to reflect the optimistic viewpoint of the
decision maker. A convex combination of the left and right integral
values through an index of optimism [16] is called the total integral
value. Here for a given level of priority  ̨ ∈ [0, 1], the total integral
value of the triangular fuzzy number Ã = (a, b, c) is taken to be the
ranking function defined as

R(Ã) = 1
2

[˛c + b + (1 − ˛)a]

We  can thus define orders on F(R) as follows. Let Ã, B̃ ∈ F(R). Then,

Ã � B̃ if and only if R(Ã) ≥ R(B̃),
Ã 
 B̃  if and only if R(Ã) > R(B̃),
Ã ≈ B̃ if and only if R(Ã) = R(B̃).

Also we write Ã � B̃ iff B̃ � Ã and Ã ≺ B̃ iff B̃ 
 Ã.

3. Problem formulation

Many problems of economics and logistics involve the planning
of a large number of interdependent activities in as economical a
way as possible. There exists an important class of nonlinear pro-
gramming problems of the form

(FCP) Minimize �(X) =
n∑

j=1

˛jxj + ˇjı(xj)

subject to
n∑

j=1

aijxj = bi, i = 1, 2, . . .,  m

xj ≥ 0, j = 1, 2, . . .,  n

where ˛j, ˇj, j = {1, 2, . . .,  n} are constants, and

ı(u) =
{

0, if u = 0

1, if u > 0

This problem with a nonlinear objective function and linear con-
straints is called the Fixed Charge Problem (FCP) and the constants
ˇj are the fixed charges associated with the jth activity. These fixed
charges are incurred if a new activity is engaged in at a positive
level, which leads to a new charge to be borne by the firm.

The fractional fixed charge problem (FFCP) discussed by Almogy
and Levin [2] is described as follows

(FFCP) Minimize Z(X) =
∑n

j=1cjxj +
∑n

j=1Fj∑n
j=1djxj +

∑n
j=1fj + �

subject to
n∑

j=1

aijxj = bi, i ∈ I = 1, 2, . . .,  m (1)

xj ≥ 0, j ∈ J = 1, 2, . . ., n (2)

where � is a constant. It is assumed that
∑n

j=1djxj +
∑n

j=1fj + � >

0 over the solution set. The numbers Fj and fj, j ∈ J are the fixed
charges associated with the decision variable xj and are formulated
in the following manner. If the quantity of the variable xj is less than
a value Aj say, then the fixed charge is kj1 units. When the quantity
exceeds or is equal to Aj, an additional fixed charge kj2 is incurred.
Then,

Fj = total fixed charge associated with the variable xj

= ı1kj1 + ı2kj2

where ı1 =
{

1, if 0 < xj < Aj

0, otherwise
and ı2 =

{
1, if xj ≥ Aj

0, otherwise

Note here that Fj is a step function and in this example it has
two steps. In [2] it is established that the optimal solution of the
fractional fixed charge problem occurs at an extreme point of the
feasible region defined by (1) and (2).

The mathematical model of the problem under consideration
which is the multiobjective fractional fixed charge problem (FMCP)
with fuzzy coefficients is

(FMCP) Minimize Z̃(X) = (Z̃1(X), Z̃2(X), . . ., Z̃p(X))

subject to
n∑

j=1

aijxj = bi, i ∈ I = {1, 2, . . .,  m}

xj ≥ 0, j ∈ J = {1, 2, . . .,  n}



Download	English	Version:

https://daneshyari.com/en/article/6904632

Download	Persian	Version:

https://daneshyari.com/article/6904632

Daneshyari.com

https://daneshyari.com/en/article/6904632
https://daneshyari.com/article/6904632
https://daneshyari.com/

