
Please cite this article in press as: S. Picek, et al., Cryptographic Boolean functions: One output, many design criteria, Appl. Soft Comput.
J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.10.066

ARTICLE IN PRESSG Model
ASOC 3309 1–19

Applied Soft Computing xxx (2015) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

Cryptographic Boolean functions: One output, many design criteria

Stjepan Piceka,b,∗Q1 , Domagoj Jakobovicb, Julian F. Millerc, Lejla Batinad, Marko Cupicb

a KU Leuven, ESAT/COSIC and iMinds, Kasteelpark Arenberg 10, bus 2452, B-3001 Leuven, Heverlee, Belgium
b Faculty of Electrical Engineering and Computing, University of Zagreb, CroatiaQ2
c Department of Electronics, University of York, UK
d Digital Security Group, Radboud University, The Netherlands

a r t i c l e i n f o

Article history:
Received 17 June 2015
Received in revised form 3 October 2015
Accepted 29 October 2015
Available online xxx

Keywords:
Evolutionary algorithms
Boolean functions
Cryptography
Comparison
Analysis

a b s t r a c t

Boolean functions represent an important primitive in the design of various cryptographic algorithms.
There exist several well-known schemes where a Boolean function is used to add nonlinearity to the
cipher. Thus, methods to generate Boolean functions that possess good cryptographic properties present
an important research goal. Among other techniques, evolutionary computation has proved to be a well-
suited approach for this problem. In this paper, we present three different objective functions, where
each inspects important cryptographic properties of Boolean functions, and examine four evolutionary
algorithms. Our research confirms previous results, but also sheds new insights on the effectiveness and
comparison of different evolutionary algorithms for this problem.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the last few decades there has been significant research onQ5
Boolean functions, for cryptography as well for other uses like alge-
braic coding and sequence design [1–4]. Accordingly, there exist
many different approaches for the construction of Boolean func-
tions as well as numerous rationales behind the choice of properties
relevant for such functions. Although Boolean functions in cryptog-
raphy have a less prominent position than 20 or more years ago,
they still represent an important cryptographic primitive. In this
paper, we concentrate on the use of Boolean functions as building
blocks in filter and combiner generators [4].

Boolean functions are often the only nonlinear element in
stream ciphers and without them a cipher would be trivial to
break. Therefore, it is not surprising that there exists a substan-
tial body of work on methods of generating Boolean functions.
However, such applications of Boolean functions in cryptogra-
phy are not the only ones. For instance, they can be also used to
resist side-channel attacks. When discussing side-channel coun-
termeasures, one important class contains masking schemes. In
masking schemes, one randomizes the intermediate values that are
processed by the cryptographic device. One obvious drawback of

∗ Corresponding author at: KU Leuven, ESAT/COSIC and iMinds, Kasteelpark Aren-Q3
berg 10, bus 2452, B-3001 Leuven, Heverlee, Belgium. Tel.: +385 98226407.

E-mail address: stjepan@computer.org (S. Picek).

such an approach is the masking overhead that can be substantial
in embedded devices or smart cards. It has been shown that cor-
relation immune Boolean functions that have minimal Hamming
weight reduce the masking overhead [5,6]. However, most of the
algebraic constructions are designed to produce balanced or bent
Boolean functions and are therefore not suitable for this task. Con-
sequently, it would be beneficial to have some other method of
constructing Boolean functions.

We distinguish between three main approaches for generating
Boolean functions for cryptographic usages: algebraic construc-
tions, random generation and heuristic constructions (and various
combinations of these approaches) [7]. Algebraic constructions use
some mathematical procedure to create a Boolean function with
good cryptographic properties. One example of such a construction
is the Maiorana-McFarland construction [4]. Random generation of
Boolean functions also has its strong points, the most prominent
being that it is easy and fast. However, the resulting Boolean func-
tions usually have suboptimal properties for cryptographic usages
[8]. Heuristic methods offer an easy and efficient way of producing
a large number of Boolean functions with very good cryptographic
properties [2]. Among different heuristic approaches, evolutionary
computation (EC) and more specifically evolutionary algorithms
(EAs) offer highly competitive results when generating Boolean
functions for cryptography [9,10]. It is worth mentioning that EAs
can be used either as the primary or the secondary construc-
tion method. In primary constructions one obtains new functions
without using known ones. In secondary constructions, one uses

http://dx.doi.org/10.1016/j.asoc.2015.10.066
1568-4946/© 2015 Elsevier B.V. All rights reserved.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

dx.doi.org/10.1016/j.asoc.2015.10.066
dx.doi.org/10.1016/j.asoc.2015.10.066
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:stjepan@computer.org
dx.doi.org/10.1016/j.asoc.2015.10.066

Please cite this article in press as: S. Picek, et al., Cryptographic Boolean functions: One output, many design criteria, Appl. Soft Comput.
J. (2015), http://dx.doi.org/10.1016/j.asoc.2015.10.066

ARTICLE IN PRESSG Model
ASOC 3309 1–19

2 S. Picek et al. / Applied Soft Computing xxx (2015) xxx–xxx

already known Boolean functions to construct new Boolean func-
tions (either with different properties or sizes) [4].

In this paper, we experiment with several different EAs in order
to explore their efficiency in the evolution of Boolean functions with
properties necessary for use in cryptography. More precisely, we
investigate Genetic Algorithms (GAs), Genetic Programming (GP),
Cartesian Genetic Programming (CGP), and Evolution Strategies
(ES). Furthermore, instead of concentrating on only one objec-
tive, we investigate three objectives, represented with different
fitness functions. Since we experiment with several methods
and fitness functions, it is not feasible to conduct experiments
with all possible parameter combinations. Therefore, we restrict
our attention to combinations which, based on our previous
results and usual settings for those algorithms, provide acceptable
results.

Since an investigation of any one of the four aforementioned
algorithms on a single objective could easily constitute a whole
paper, this work should be regarded as a practical guide and not
as an in-depth analysis. However, it is worth noting that we per-
form more than 30,000 independent experimental runs for various
EAs in order to conduct statistical analysis. We concentrate here
only on Boolean functions with eight inputs. Eight inputs is a rel-
atively small size for Boolean functions for stream ciphers (it is
commonly considered that 13 is a strict minimum for resisting alge-
braic attacks), but we still believe it is an interesting case. Indeed, for
instance ciphers RAKAPOSHI [11] and Achterbahn [12] use Boolean
functions of that size. Evolving Boolean functions is a challeng-
ing task because there exist 22n

possible Boolean functions of n
inputs (for eight inputs this gives 2256 candidate solutions). There-
fore, with anything more than five inputs it is impossible to do
an exhaustive search. Furthermore, with larger sizes of Boolean
functions the search space grows, but also the computational com-
plexity of their various properties grows. Thus, it is unrealistic to
expect that EAs can work for much larger sizes than 13 inputs. This
is because the computation of some properties like the algebraic
immunity, and even more the fast algebraic immunity, becomes
rapidly prohibitive for large numbers of inputs.

The rest of this paper is organized as follows. In Section 2, we
present several applications of stochastic algorithms when generat-
ing Boolean functions appropriate for cryptographic usages. Section
3 presents relevant representations and cryptographic properties
of Boolean functions. Next, in Section 4 we give fitness functions
used in our experiments. Section 5 deals with the experimental
setup and EAs we use. In Section 6, we give results for each of
the objective functions as well as a short discussion on the results.
Finally, we end with a short summary in Section 7.

2. Related work

As noted, there have been many applications of heuristic meth-
ods for the generation of Boolean functions for cryptographic
usages. Here, we describe previous work directly related to our
investigation in a chronological order. As far as the authors know,
the first application of GAs to the evolution of cryptographically
suitable Boolean functions emerged in 1997 when Millan et al.
experimented with GAs to evolve Boolean functions with high non-
linearity [13]. In his thesis, Clark presented several applications of
optimization techniques in the field of cryptology [14]. One of the
applications is the evolution of Boolean functions with high non-
linearity using GA and hill climbing techniques. Millan, Clark, and
Dawson used GAs to evolve Boolean functions that have high non-
linearity [15]. In conjunction with the GA they used hill climbing
together with a resetting step in order to find Boolean functions
with even higher nonlinearity for sizes of up to 12 inputs. More
specifically, when discussing Boolean functions with eight inputs,

they found balanced functions with nonlinearity 112 and correla-
tion immunity equal to one.

Millan et al. used variations of a hill climbing method in order to
find Boolean functions that have high nonlinearity and low auto-
correlation [16].

Clark and Jacob experimented with two-stage optimization to
generate Boolean functions with high nonlinearity and low auto-
correlation [17]. They used a combination of simulated annealing
(SA) and hill climbing with a cost function motivated by Parse-
val theorem. Clark et al. used SA to generate Boolean functions
with cryptographically relevant properties where they considered
balanced function with high nonlinearity and with the correlation
immunity less and equal to two [18].

Kavut and Yücel developed an improved cost function for a
search that combines SA and hill climbing [19]. In their approach,
the authors were able to find some functions of eight and nine
inputs that have a combination of nonlinearity and autocorrela-
tion values previously unattained. They also experimented with a
three-stage optimization method that combines SA and two hill
climbing algorithms with different objectives.

Clark et al. experimented with SA in order to design Boolean
functions using spectral inversion [20]. They observed that many
cryptographic properties of interest are defined in terms of the
Walsh–Hadamard transform values. Therefore, they worked in the
spectral domain where the cost function punishes those solu-
tions that are not Boolean functions. More precisely, on the
basis of Parseval’s theorem one can infer what values should
be in a Walsh–Hadamard spectrum, but it is impossible to say
what the positions should be. Therefore, when generating a
Walsh–Hadamard spectrum it is necessary to make an inverse
transform to verify that the spectrum indeed maps to a Boolean
function. Burnett et al. presented two heuristic methods where the
goal of the first method was to generate balanced Boolean func-
tions with high nonlinearity and low autocorrelation. The second
method aimed to generate resilient functions with high nonlinear-
ity and algebraic degree that maximizes the Siegenthaler inequality
[21]. Millan, Fuller and Dawson proposed a new adaptive strategy
for a local search algorithm for the generation of Boolean func-
tions with high nonlinearity [8]. Additionally, they introduced the
notion of the graph of affine equivalence classes of Boolean func-
tions. Burnett in her thesis used three heuristic techniques to evolve
Boolean functions [2]. The first method aimed to evolve balanced
functions with high nonlinearity. The second method was used to
find balanced Boolean functions with high nonlinearity that are
correlation immune. The last method was used to find balanced
functions with high nonlinearity and propagation characteristics
different from zero. Aguirre et al. used a multi-objective random bit
climber to search for balanced Boolean functions of size up to eight
inputs that have high nonlinearity [22]. Their results indicate that
the multi-objective approach is highly efficient when generating
Boolean functions that have high nonlinearity. Izbenko et al. used
a modified hill climbing algorithm to transform bent functions to
balanced Boolean functions with high nonlinearity [23]. McLaugh-
lin and Clark experimented with SA to generate Boolean functions
that have optimal values of algebraic immunity, fast algebraic resis-
tance, and algebraic degree [24]. In their work, they experimented
with Boolean functions with sizes of up to 16 inputs.

Picek, Jakobovic, and Golub experimented with GA and GP to
find Boolean functions that possess several optimal properties [9].
As far as the authors know, this is the first application of GP for
evolving cryptographically suitable Boolean functions. Hrbacek and
Dvorak used CGP to evolve bent Boolean functions of sizes up to 16
inputs [25] where the authors experimented with several config-
urations of algorithms in order to speed up the evolution process.
They did not limit the number of generations and therefore they
succeeded in finding bent function in each run for sizes between

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

dx.doi.org/10.1016/j.asoc.2015.10.066

Download English Version:

https://daneshyari.com/en/article/6904791

Download Persian Version:

https://daneshyari.com/article/6904791

Daneshyari.com

https://daneshyari.com/en/article/6904791
https://daneshyari.com/article/6904791
https://daneshyari.com

