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a  b  s  t  r  a  c  t

Evolution  is an indispensable  process  in  life.  Biologists  have  found  this  basic  concept  and  scientists  have
modeled  it  on  computers  algorithmically  known  as evolutionary  algorithms  (EAs). Multiobjective  EAs
(MOEAs)  are  well  established  population  based  techniques  for solving  various  search  and  optimization
problems.  MOEAs  can  employ  different  evolutionary  operators  to evolve  population  for  approximating  a
set  of  optimal  solutions  in single  run to problem  at hand.  Different  evolutionary  operators  suite  different
problems.  The  use  of  multiple  operators  with  self-adaptive  manner  can  further  improve  the  performance
of  existing  MOEAs.  This  paper  suggest  new  version  of  a multi-algorithm  genetically  adaptive  for  multi-
objective  (AMALGAM)  by  employing  differential  evolution  (DE),  particle  swam  optimization  (PSO)  and
genetic algorithm  (GA)  for population  evolution  during  the  whole  course  of optimization.  We  examine
the  performance  of new  version  of AMALGAM  experimentally  over  two  different  test  suites,  the  ZDT  test
problems  and  test  instances  designed  recently  for the special  session  of  MOEAs  competition  in Congress
of  Evolutionary  Computing  2009  (CEC’09).  The  suggested  algorithm  have  provided  better  approximated
results  on  most  test  problems  in terms  of  inverted  generational  distance  (IGD)  as  metric  indicator.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Multi-objective evolutionary optimization is a subject of intenseQ5
interest in all fields of Sciences, Engineering, Economics, Logistics
and others. Multiobjective optimization problems (MOPs) more
than one conflicting objective functions and they have many real-
world application [1,30]. A general MOP  can mathematically be
formulated as under:

minimize F(x) = (f1(x), . . .,  fm(x))T

subject to x ∈ �
(1)

where � is the decision variable space, x = (x1, x2, . . .,  xn)T is an
individual/solution and xi, i = 1, . . .,  n are their decision variables,
F(x) : � → Rm is consist of m real valued objective functions and Rm

is called the objective space.
If � is closed and connected region in Rn and all the objective

function in (1) are continuous of x, we called it continuous MOP.
Furthermore, if m ≥ 3, then problem (1) is said to be many objective
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problems. In single objective optimization, the main focus is on
the decision space while in multi-objective optimization, we  are
mainly focus the objective space because objective values are used
in defining the optimality [20].

In practical applications of optimization, it is very common, the
objective functions of the MOP  are in conflict with one another
or mostly incommensurable. One needs a set of optimal solutions
to solve these problems. Multiobjective evolutionary algorithms
(MOEAs) are highly effective and powerful techniques and can find
a set optimal solutions in single simulation run to MOPs due popu-
lation based nature unlike traditional mathematical programming.

In the past two decade, since the inception of vector evaluated
GA (VEGA) [24], different types of MOEAs have been suggested
[5,32,31,7,21,9,2,3]. All they are mainly emphasizing on three
conflicting goals: firstly, the final approximated Pareto front (PF)
should be as close as possible to the true PF, secondly, final
set of Pareto optimal solutions should be uniformly distributive
and diverse over the true PF of the problem (1) and thirdly the
approximated PF should capture the whole spectrum of the true
PF. Different fitness assignment procedures, elitism or diversity
promoting strategies are found in existing literature of evolu-
tionary computing (EC). Pareto dominance concept MOEAs are
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very common for solving MOPs [12,4]. To promote diversity in
their population, most of these algorithms are utilizing different
diversity techniques such as fitness sharing, niching approach, Ker-
nel approach, nearest neighbor approach, histogram technique,
crowding or clustering, relaxed form of dominance and restricted
mating [3]. Among them, a fast non-dominated sorting algorithm
(NSGA-II) [5], SPEA2: improving the strength Pareto evolutionary
algorithm [31], the Pareto archive evolution strategy (PAES) [11],
multiobjective genetic algorithm (MOGA) [8], and niched Pareto
genetic algorithm (NPGA) [9] are long-familiar and well known
approaches. They have shown good behaviors several comparative
analysis.

Multiobjective memetic algorithms (MOMAs) is newly and
attractive area of research in the existing literature of EC. They are
algorithms inspired by the models of adaptation found in nature.
This paradigm are habituating genetic algorithm globally in com-
bination with various local search heuristics. They are also known
as Baldwinian evolutionary algorithms (EA), Lamarckian EAs, cul-
tural algorithms, or genetic local search and hybrid MOEAs [22].
Hybrid MOEAs develop with aim to overcome the shortcomings of
stand-alone MOEAs [19].

A multi-algorithm genetically adaptive multi-objective (AMAL-
GAM) is recently developed for solving both multiobjective
optimization problems [25] and single optimization problems
[26]. It employ multiple search operators for its population evo-
lution. The search operators used including the particle swarm
optimizer (PSO) [6], differential evolution (DE) [23] and NSGA-II
[5] and allocates resources dynamically to each search opera-
tors based on their individual performances. It does not involve
any decomposition as like MOEA/D: multiobjective evolutionary
algorithm based on decomposition [27]. MOEA/D decomposes the
approximated PF of the given MOP  into a number of different
single objective optimization subproblems and then optimize all
these subproblems simultaneously by using generic evolution-
ary algorithm. MOEA/D [27] have performed very and have had
many hybrid versions [10,13,15,14,18,16,19]. Our main objective
is further improve the algorithmic performance of ALMAGAM by
employing an alternative dynamic resource allocation scheme in its
framework to tackle recently developed CEC’09 test instances [29]
and commonly used ZDT test problems [33] in various comparative
analysis.

The rest of this paper is organized as follows. Section 2 outlines
the framework of new version of multi-algorithm genetically adap-
tive multi-objective (AMALGAM). Section 3 presents experimental
results provided by new AMALGAM on both CEC’09 [29] and five
ZDT test problems [33]. Section 4 devoted to discussion on experi-
mental results. Section 5 finally concludes this paper with possible
future plan.

2. New version of a multi-algorithm genetically adaptive
for multiobjective optimization problems

Algorithm 1 outlines the framework of new version of AMAL-
GAM. In Sept 1, a population P with size N is generated uniformly
and randomly in the search space of the given MOP. We  then evalu-
ate the fitness values of each member of the population P together
with their crowding distance calculation and categorize in different
layers using fast non-dominating sorting technique of NSGA-II [5].
After this an Algorithm 1 utilizes k search operators to work on sub-
populations N1, N2, N3 in order to generate an offspring population
Q of size N. We  have used three search operators including DE, PSO,
GA in the evolutionary process of our algorithm. Resources of each
individual search operator are updated dynamically based on their
individual performance according to the procedure as explained in
Section 2.1.

Algorithm 1. New version of AMALGAM for MOPs.
Input: 1: MOP: the multiobjective optimization problem;
2: N: the population size and other main parameters;
3:  Feval: maximum function evaluations;
Output: {x1, . . .,  xN} and {F(x1), . . .,  F(xN)};
Step 1: Generate an initial population P of size N uniformly and randomly.
Step 2: Calculate the F-function values of each member of the P population.
Step 3: Assign rank to each member of P using fast non-dominating

procedure.
Step 4: Assign sub-populations P = {P1, P2, . . .,  Pk} to k operators for

creating an offspring population Q = {Q1, Q2, . . .,  Qk} of size N.
Step 5: Calculate F-function values of Q offspring population.
Step 6: Assign rank to each member of Q using fast non-dominating

procedure.
Step 7: Combine the new and old population P and Q, R = P ∪ Q.
Step 8: Select population P of size N from population R of size 2N based on

their ranks and crowding distances for next generation.
Step 9: Update N best individuals among C population with high ranks and

crowding density.
Step 10: Update P = {P1, P2, . . ., Pk} (Explanation can be found in Section

2.1) based on the individual performances of each search operator.

2.1. Alternative adaptive resources allocation scheme

• We  calculate the number of solutions that successfully enter
to the next generation during the evolutionary process of new
version of AMALGAM. A successful solution got awarded 1 and
unsuccessful 0. A more successful operator gets more resources
in the form of subpopulation to be operate on as compared to
others.

• Let ı1, ı2, ı3 are total number of non-dominated solutions pro-
duced by DE, PSO, GA which are successfully enter to next
generation are convert into normalized form to develop prob-
ability formula (3)

Pk = �k
∑3

k=1�k

, where �k = ık
∑3

k=1ık

(2)

Pk = ˛Pk−1 × N + (1 − ˛)Pk × N (3)

where Pk is the current and Pk−1 is the previous probability of
successes of the k search operators. More importantly, the above
mentioned dynamic resources allocation did not switch on at
every generation of proposed algorithm. It can switch at every
multiple of 5th generation in ZDT test problems while for CEC’09
test instances at every multiple of 10th generation.

3. Parameters setting and experimental results

Experiments carried out on test functions with two and three
objectives. Parameters for solving both ZDT test [33] and CEC’09
[29] are explained in Sections 3.1 and 3.2, respectively.

3.1. Parameter settings for ZDT problems

• N = 100: population size for 2-objective test instances.
• F = 0.5: scaling factor of the DE.
• CR = 0.5: crossover probability for DE.
• w is the inertia factor which lies in [0.8, 1.2].
• c1 and c2 are the two  acceleration constant or acceleration

coefficients that usually lies between 1 and 4.
• ur ∈ [−1, 1] is a continuous uniform random number.
• w = 0.5 + rand/2: inertia factor which lies in [0.8, 1.2].
• c1 = c2 = 1.5: acceleration constant or acceleration coefficients

that usually lies between 1 and 4.
• � = 1.
• Feval = 25, 000: maximum function evaluations.
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