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a b s t r a c t

This work addresses the problem of detecting parametric faults in nonlinear dynamic systems by extend-
ing an eigenstructure based technique to a nonlinear context. Two local state-space models are updated
online based on a recursive subspace system identification technique. One of the models relies on
input–output real-time data collected from the plant, while the other is updated using data generated by
a neural network predictor, describing the nonlinear plant behaviour in fault-free conditions. Parametric
faults symptoms are generated based on eigenvalues residuals associated with two linear state-space
model approximators. The feasibility and effectiveness of the proposed framework are demonstrated
through two case studies.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The increasing complexity and integration of industrial pro-
cesses, some of them highly critical, has made it imperative to
provide supervision systems with dedicated tools that could isolate
and accommodate malfunctions or, generically faults, whenever
needed. Furthermore, fault detection and isolation is a fundamen-
tal prerequisite for implementing conditioning-based maintenance
procedures, in which the regular and systematic inspection of
systems parts are replaced by analysing particular signals, along
with decision-making actions that are performed on the basis of
extracted features from data, either in real-time or offline.

Fault detection and isolation (FDI), as a whole, consists in mak-
ing binary decisions concerning a given malfunctioning hypothesis
and to determine its nature and location (see e.g. [14,3]). In
general, FDI techniques rely on hardware-based schemes or on
analytical redundancy approaches, or even on a combination of
both. The former methodology is essentially based on comparing
identical readings, collected with additional hardware, while the
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analytical or software based approaches make use of mathemat-
ical models and dedicated estimation methods (see e.g. [13,45]),
in order to detect fault events. As this approach, commonly, does
not require any additional hardware, its implementation is more
attractive and cost-efficient. Nevertheless, analytical FDI methods
are undoubtedly more challenging, as they need to cope with model
uncertainties, unknown/unmeasurable disturbances and outliers,
which may globally bias fault symptoms, and thus compromising
the underlying sensitivity and specificity.

Among analytical approaches (see e.g. [21]), model-based fault
detection and isolation techniques commonly resort to a set of
residuals between a plant’s readings and the outputs of a given
predictor. By taking into account the residuals’ magnitude and,
possibly, other features, a classifier triggers symptoms regarding
the presence or absence of faults. The residuals generation can be
implemented based on state and output observers (see e.g. [44,31],
parity relations (see e.g. [42,10,29]), or on parameters estimation
using system identification techniques (see e.g. [43,7]). Concerning
system identification based techniques, a model of the plant under
normal operating conditions, assuming no faults, is derived either
online or offline, and by detecting relevant changes in the model
parameters (see e.g. [35]), the presence of faults are then isolated.

In a number of FDI problems the presence of parametric faults
can be detected from changes in the eigenstructure of a linear
state-space model describing the system dynamics. This model
can be obtained from input–output data collected from the system
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and using, for instance, subspace-based linear system identifica-
tion techniques (see e.g. [41]). In this case, as the derived model
is described in state-space form, the eigenvalues associated with
a given parameterization are immediately retrieved from the sys-
tem matrix. Although this framework has been successfully applied
in a number of case studies (see e.g. [2,1,8]), when the linearity
assumption does not hold, the approach is doomed to fail, owing
to the unreliability of residuals generation, which is partly related
to model-plant mismatch. Hence, resorting to eigenvalues-based
algorithms for FDI in a nonlinear context requires a completely
different problem conceptualization and formulation.

The motivation and main contribution of this work is to extend
a linear fault detection methodology relying on the system eigen-
structure to nonlinear systems, for which faults are modelled as
changes in the internal system dynamics. The approach makes
use of a recursive subspace based system identification technique,
along with the approximation capabilities of Nonlinear Autore-
gressive with Exogenous Inputs (NARX) neural networks, while
assuming the input–output certainty equivalence principle. In this
framework, two linear models are recursively updated in parallel.
One of the models resorts to input–output data collected from the
plant, while the other relies on input–output data provided by a
NARX predictor. The corresponding eigenvalues are used to gener-
ate a set of residuals, from which symptoms of possible faults are
triggered by a decision system.

The remainder of this paper is organized as follows. In Section 2
subspace-based methods for state-space system identification are
discussed and two formulations presented, namely one where the
parameters are estimated offline and the other based on a recur-
sive implementation. Further, the model-based approach to fault
detection is also discussed in terms of residuals and symptoms
generation. Section 3 is devoted to presenting and describing the
proposed approach for parametric fault detection in nonlinear sys-
tems, while Section 4 discusses some results obtained from two
case studies. Finally, concluding remarks are drawn in Section 5.

2. System identification for fault detection

System identification deals with the problem of deriving an
empirical model for a dynamical system based on input–output
data. In the context of FDI, a model of the plant in normal or nomi-
nal operating conditions is first obtained. When a fault occurs, the
underlying system behaviour in terms of outputs, inputs or internal
dynamics, will differ from that predicted by the nominal model. As
such, any fault event will lead to a change in the parameterization
values.

The system identification problem aims at finding a relationship
g(·) between past instantiations (uk−1, yk−1) and current outputs
y(k) (1), by appealing to a given regression technique, and taking
into account an ordered data set sampled from the plant.

y(k) = g(uk−1, yk−1) + ϑ(k) (1)

where ϑ is an additive noise term and

{uk−1} �
[
u(k − 1) · · · u(k − ˛)

]T

{yk−1} �
[
y(k − 1) · · · y(k − ˇ)

]T
(2)

with ˛,ˇ ∈ N+.
Among possible model structures g(·) to approximate the

input–output behaviour of a plant, the present work considers the
linear state-space models and a NARX neural network, with the
choice of these structures dictated by the nature of the proposed
FDI framework. The linear state-space model-based online identifi-
cation relies on a recursive subspace technique, whereas the NARX

neural network predictor training is carried out offline, using an
iterative optimization algorithm.

2.1. Subspace system identification

A general feature of all Subspace System Identification (SID)
methods is that they do not require a priori model parameter-
ization, namely the model order, as its estimation is internally
performed by the algorithm. Furthermore, the estimate of the
underlying matrices relies on algebraic techniques, which makes
them a very robust approach and less time consuming, compared
to other methodologies, such as Prediction Error methods. Never-
theless, these methods can only provide suboptimal solutions (see
e.g. [9,19]), which may ultimately impact on the approximation
order and prediction performance.

Assume the linear time-invariant system described in state-
space form as follows:

x(k + 1) = Ax(k) + Bu(k) +ω(k)

y(k) = Cx(k) + Du(k) +�(k)
(3)

where x ∈ Rn, y ∈ Rl , u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and D ∈
R
l×m, while� ∈ Rl andω ∈ Rn are unobserved Gaussian distributed,

zero mean, white noise sequences, accounting for the measurement
noise and process noise, with covariances defined according to:

E

[(
ω(p)

�(p)

)(
ωT (q) �T (q)

)]
=
(
Q S

ST R

)
ıpq (4)

with E denoting the expected value operator and ıpq the Kro-
necker index. Moreover, suppose the available data collected from
the plant are ergodic, the number of samples is sufficiently large
(N→ ∞), and Eq. (3) satisfies the following orthogonality property:

E

[(
x(k)

u(k)

)(
ωT (k) �T (k)

)]
= 0 (5)

2.1.1. Offline identification
Consider a data-set comprising an ordered sequence of

input–output data collected from a plant, namely,

UN = {u(0), u(1), . . ., u(N − 1)}
YN = {y(1), y(2), . . ., y(N)}

(6)

To come up with estimates for the state-space matrices (A, B, C,
D) (up to within a similarity transformation) and error covariance
matrices (Q, R, S), the data set ZN = {UN, YN} is organized under the
form of past and the future block Hankel matrices. For the input
sequence UN, the underlying block Hankel matrices take the fol-
lowing form:

Up =

⎛⎜⎜⎜⎝
u(0) u(1) · · · u(j − 1)

u(1) u(2) · · · u(j)
...

...
. . .

...

u(i− 1) u(i) · · · u(i+ j − 2)

⎞⎟⎟⎟⎠ (7)

Uf =

⎛⎜⎜⎜⎝
u(i) u(i+ 1) · · · u(i+ j − 1)

u(i+ 1) u(i+ 2) · · · u(i+ j)
...

...
. . .

...

u(2i− 1) u(2i) · · · u(2i+ j − 2)

⎞⎟⎟⎟⎠ (8)
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