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1. Introduction

Cognitive radio (CR) [1,2] is the next-generation wireless com-
munication system that promises to address the artificial spectrum
scarcity issue resulting from the traditional static spectrum allo-
cation policy through dynamic spectrum access. With dynamic
spectrum access, unlicensed users, or secondary users (SUs), can
opportunistically exploit underutilized spectrum owned by the
licensed users or primary users (PUs). Hence, CRs can improve the
overall spectrum utilization by improving bandwidth availability
at SUs. To achieve these functions, artificial intelligence (Al) tech-
niques have been adopted in CR so that the SUs can sense, learn,
and adapt to the dynamic network conditions, in which the PUs’
and malicious users’ activities appear and reappear. Cognitive radio
networks (CRNs) can operate in both centralized and distributed
settings: a centralized CRN consists of a SU base station (or access
point) that communicates with SU nodes while a distributed net-
work consists of SU nodes that communicate with each other in an
ad-hoc manner.

CRNs rely on cooperation for much of their functionality. While
such areliance on cooperative algorithms can make CRNs more effi-
cient, this also opens CRNs up to numerous security vulnerabilities.
One of the important requirements of CRNs is that SUs must mini-
mize harmful interference to PUs. This requires SUs to collaborate
amongst themselves to perform channel sensing and make accu-
rate final decision on the availability of a channel. However, such
collaboration among SUs may pose a security challenge to the SUs’
trustworthiness. For instance, in collaborative channel sensing, the
legitimate (or honest) SUs depend highly on the dynamic allocation
of a common control channel (CCC), which is used for the exchange
of control messages during normal operations. However, the

collaborating SUs may be malicious, and they may intentionally
provide false sensing outcomes to interfere with the PUs or the
other SUs, as well as to launch jamming attacks on the CCC, which
adversely impacts performance and causes transmissions to come
to a halt [3]. Hence, such SUs need to be detected and ignored
in collaboration. The aforementioned discussion highlights that
CRNs are susceptible to various attacks, such as channel jamming,
eavesdropping or packets alteration. Further details on CRNs vul-
nerabilities, attacks and security threats can be found in detailed
survey articles on this topic [4-6].

The main security challenge in a CRN is that it operates in a
dynamic set of licensed and unlicensed channels (in contrast to tra-
ditional wireless networks that typically operate with a fixed set of
limited channels). In addition, the dynamic nature of the activities
of PUs and malicious nodes requires SUs to change their operat-
ing channels from time to time: hence, longer-term knowledge is
necessary so that SUs do not oscillate or constantly switch their
actions within a short period of time. With this inherent charac-
teristic, a mechanism to manage and learn from the ever-changing
environment is needed to tackle the security challenge.

Reinforcement learning (RL) is an artificial intelligence (AI)
approach that helps a decision maker (or agent) to learn the optimal
action through repeated interaction with the operating environ-
ment [7]. RL is an unsupervised and intelligent approach that
enables an agent to observe and learn about the static or dynamic
operating environment in the absence of guidance, feedback or the
expected response from supervisors (or external critics), and sub-
sequently make decisions on action selection in order to achieve
optimal or near-optimal system performance. RL has been adopted
in the literature [8-16] because it does not require prior knowledge
of channel availability and it is highly adaptive to the dynamicity
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